精英家教網 > 初中數學 > 題目詳情

【題目】一次函數y1=﹣ x﹣1與反比例函數y2= 的圖象交于點A(﹣4,m).
(1)觀察圖象,在y軸的左側,當y1>y2時,請直接寫出x的取值范圍;
(2)求出反比例函數的解析式.

【答案】
(1)解:在y軸的左側,當y1>y2時,x<﹣4
(2)解:把點A(﹣4,m)代入y1=﹣ x﹣1得m=﹣ ×(﹣4)﹣1=1,

則A點坐標為(﹣4,1),

把A(﹣4,1)代入y2= 得k=﹣4×1=﹣4,

所以反比例函數的解析式為y2=﹣


【解析】(1)先觀察函數圖象得到在y軸的左側,當x<﹣4時,一次函數圖象都在反比例函數圖象上方,即有y1>y2;(2)先根據一次函數解析式確定A點坐標,然后把A點坐標代入y2= 可計算出k的值,從而得到反比例函數解析式.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標;
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標;
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標平面內的點,且N點的橫坐標為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校開展課外體育活動,決定開設A:籃球、B:乒乓球、C:武術、D:跑步四種活動項目為了解學生最喜歡哪一種活動項目每人只選取一種隨機抽取了m名學生進行調查,并將調查結果繪成如下統(tǒng)計圖,請你結合圖中信息解答下列問題:

______;

在扇形統(tǒng)計圖中“乒乓球”所對應扇形的圓心角的度數為______;

請把圖的條形統(tǒng)計圖補充完整;

若該校有學生1200人,請你估計該校最喜歡武術的學生人數約是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】順次連接菱形各邊的中點所形成的四邊形是(
A.等腰梯形
B.矩形
C.菱形
D.正方形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題12分)如圖1,在平面直角坐標系中,四邊形OABC各頂點的坐標分別O(0,0),A(3, ),B(9,5 ),C(14,0).動點P與Q同時從O點出發(fā),運動時間為t秒,點P沿OC方向以1單位長度/秒的速度向點C運動,點Q沿折線OAABBC運動,在OA,AB,BC上運動的速度分別為3, , (單位長度/秒)﹒當P,Q中的一點到達C點時,兩點同時停止運動.

(1)求AB所在直線的函數表達式.
(2)如圖2,當點Q在AB上運動時,求△CPQ的面積S關于t的函數表達式及S的最大值.
(3)在P,Q的運動過程中,若線段PQ的垂直平分線經過四邊形OABC的頂點,求相應的t值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題10分) 如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結OC,AC.

(1)求證:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度數.
②若⊙O的半徑為2 ,求線段EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一塊鐵片邊緣是由拋物線和線段AB組成,測得AB=20cm,拋物線的頂點到AB邊的距離為25cm.現(xiàn)要沿AB邊向上依次截取寬度均為4cm的矩形鐵皮,從下往上依次是第一塊,第二塊…如圖所示.已知截得的鐵皮中有一塊是正方形,則這塊正方形鐵皮是第塊.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數為(
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

同步練習冊答案