【題目】已知,拋物線y=ax2+bx+3(a<0)與x軸交于A(3,0)、B兩點,與y軸交于點C,拋物線的對稱軸是直線x=1,D為拋物線的頂點,點E在y軸C點的上方,且CE=

(1)求拋物線的解析式及頂點D的坐標;
(2)求證:直線DE是△ACD外接圓的切線;
(3)在直線AC上方的拋物線上找一點P,使SACP= SACD , 求點P的坐標;
(4)在坐標軸上找一點M,使以點B,C,M為頂點的三角形與△ACD相似,直接寫出點M的坐標.

【答案】
(1)解:∵拋物線的對稱軸是直線x=1,點A(3,0),

∴根據(jù)拋物線的對稱性知點B的坐標為(﹣1,0),OA=3,

將A(3,0),B(﹣1,0)代入拋物線解析式中得:

解得: ,

∴拋物線解析式為y=﹣x2+2x+3;

當x=1時,y=4,

∴頂點D(1,4).


(2)解:當=0時,

∴點C的坐標為(0,3),

∴AC= =3 ,CD= = ,AD= =2 ,

∴AC2+CD2=AD2

∴△ACD為直角三角形,∠ACD=90°.

∴AD為△ACD外接圓的直徑,

∵點E在 軸C點的上方,且CE=

∴E(0,

∴AE= = DE= = ,

∴DE2+AD2=AE2,

∴△AED為直角三角形,∠ADE=90°.

∴AD⊥DE,

又∵AD為△ACD外接圓的直徑,

∴DE是△ACD外接圓的切線;


(3)解:設(shè)直線AC的解析式為y=kx+b,

根據(jù)題意得: ,

解得: ,∴直線AC的解析式為y=﹣x+3,

∵A(3,0),D(1,4),

∴線段AD的中點N的坐標為(2,2),

過點N作NP∥AC,交拋物線于點P,

設(shè)直線NP的解析式為y=﹣x+c,

則﹣2+c=2,解得:c=4,

∴直線NP的解析式為y=﹣x+4,

由y=﹣x+4,y=﹣x2+2x+3聯(lián)立得:﹣x2+2x+3=﹣x+4,

解得:x= 或x=

∴y= ,或y=

∴P( )或( , );


(4)解:分三種情況:①M恰好為原點,滿足△CMB∽△ACD,M(0,0);

②M在x軸正半軸上,△MCB∽△ACD,此時M(9,0);

③M在y軸負半軸上,△CBM∽△ACD,此時M(0,﹣ );

綜上所述,點M的坐標為(0,0)或(9,0)或(0,﹣ ).


【解析】(1)把A點坐標代入解析式及由對稱軸x=1求出B點坐標代入即可;頂點可配方化為頂點式;(2)由兩點間距離公式求出AC、CD、AD的長,運用勾股定理逆定理判定出△ACD為直角三角形,再判定出△AED為直角三角形,∠ADE=90°.即AD⊥DE,AD為△ACD外接圓的直徑,所以DE是△ACD外接圓的切線;(3)若SACP= SACD則P在過AD中點的平行于AC的直線上,此直線解析式中k 與AC 解析式斜率k相等,聯(lián)立此直線與拋物線解析式,求出P的坐標;(4)用文字連接的相似,對應(yīng)點不確定,須分類討論,分3類:M恰好為原點;M在x軸正半軸上;M在y軸負半軸上;按照對應(yīng)邊成比例,可求出M坐標.
【考點精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)有一點D且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組為了了解本校學生參加課外體育鍛煉情況,隨機抽取本校40名學生進行問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為;“經(jīng)常參加課外體育鍛煉的學生最喜歡的一種項目”中,喜歡足球的人數(shù)有人,補全條形統(tǒng)計圖.
(2)該校共有1200名學生,請估計全校學生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?
(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OC是∠AOB的平分線,OD是∠AOC的平分線,OE是∠BOD的平分線,且∠BOE30°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時間x(h)之間的函數(shù)關(guān)系.請根據(jù)圖象,解答下列問題:

(1)線段CD表示轎車在途中停留了 h;

(2)求線段DE對應(yīng)的函數(shù)解析式;

(3)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的分式方程 = 的解是非負數(shù),那么a的取值范圍是( )
A.a>1
B.a≥1
C.a≥1且a≠9
D.a≤1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是1cm/s,設(shè)P、Q出發(fā)t秒時,△BPQ的面積為y(cm2),已知y與t的函數(shù)關(guān)系的圖象如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:
①AD=BE=5cm;②當0<t≤5時,y= t2;③直線NH的解析式為y=﹣ t+27;④若△ABE與△QBP相似,則t= 秒,
其中正確結(jié)論的個數(shù)為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)接到為地震災區(qū)生產(chǎn)活動房的任務(wù),此企業(yè)擁有九個生產(chǎn)車間,現(xiàn)在每個車間原有的成品活動房一樣多,每個車間的生產(chǎn)能力也一樣.有A、B兩組檢驗員,其中A組有8名檢驗員前兩天時間將第一、二車間的所有成品(原來的和這兩天生產(chǎn)的)檢驗完畢后,再去檢驗第三、四車間所有成品,又用去三天時間;同時這五天時間B組檢驗員也檢驗完余下的五個車間的所有成品.如果每個檢驗員的檢驗速度一樣快,那么B組檢驗員人數(shù)為(  )

A. 8B. 10C. 12D. 14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.

求證:∠C=∠D.

證明:因為∠1=∠2(已知),∠1=∠3( )

得∠2=∠3( )

所以AE//_______( )

得∠4=∠F( )

因為__________(已知)

得∠4=∠A

所以______//_______( )

所以∠C=∠D( )

查看答案和解析>>

同步練習冊答案