【題目】如圖,兩個(gè)等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.
(1)觀察猜想如圖1,點(diǎn)E在BC上,線段AE與BD的數(shù)量關(guān)系,位置關(guān)系.
(2)探究證明把△CDE繞直角頂點(diǎn)C旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論還成立嗎?說(shuō)明理由;
(3)拓展延伸:把△CDE繞點(diǎn)C在平面內(nèi)自由旋轉(zhuǎn),若AC=BC=13,DE=10,當(dāng)A、E、D三點(diǎn)在直線上時(shí),請(qǐng)直接寫(xiě)出AD的長(zhǎng).
【答案】(1)AE=BD,AE⊥BD;(2)結(jié)論:AE=BD,AE⊥BD.理由見(jiàn)解析;(3)滿足條件的AD的值為17或7.
【解析】
(1)如圖1中,延長(zhǎng)AE交BD于H.只要證明△ACE≌△BCD即可;
(2)結(jié)論不變.如圖2中,延長(zhǎng)AE交BD于H,交BC于O.只要證明△ACE≌△BCD即可;
(3)分兩種情形分別求解即可解決問(wèn)題;
(1)如圖1中,延長(zhǎng)AE交BD于H.
∵AC=CB,∠ACE=∠BCD,CE=CD,
∴△ACE≌△BCD,
∴AE=BD,∠EAC=∠CBD,
∵∠EAC+∠AEC=90°,∠AEC=∠BEH,
∴∠BEH+∠EBH=90°,
∴∠EHB=90°,即AE⊥BD,
(2)結(jié)論:AE=BD,AE⊥BD.
理由:如圖2中,延長(zhǎng)AE交BD于H,交BC于O.
∵∠ACB=∠ECD=90°,
∴∠ACE=∠BCD,
∵AC=CB,∠ACE=∠BCD,CE=CD,
∴△ACE≌△BCD,
∴AE=BD,∠EAC=∠CBD,
∵∠EAC+∠AOC=90°,∠AOC=∠BOH,
∴∠BOH+∠OBH=90°,
∴∠OHB=90°,即AE⊥BD.
(3)①當(dāng)射線AD在直線AC的上方時(shí),作CH⊥AD用H.
∵CE=CD,∠ECD=90°,CH⊥DE,
∴EH=DH,CH=DE=5,
在Rt△ACH中,∵AC=13,CH=5,
∴
∴AD=AH+DH=12+5=17.
②當(dāng)射線AD在直線AC的下方時(shí)時(shí),作CH⊥AD用H.
同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,
綜上所述,滿足條件的AD的值為17或7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王紅有5張寫(xiě)著以下數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各題:
(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最小,最小值是 .
(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最大,最大值是 .
(3)從中取出除0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,(注:每個(gè)數(shù)字只能用一次,如:23×[1﹣(﹣2)]),請(qǐng)另寫(xiě)出一種符合要求的運(yùn)算式子 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(﹣20)+(+3)﹣(﹣5)
(2)(﹣5)×6×÷(﹣2)
(3)﹣÷﹣×(﹣9)
(4)(﹣1)4+5÷(﹣)×(﹣6)
(5)(+﹣)×36
(6)﹣1﹣[1+(﹣12)÷6]×(﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人從, 兩地同時(shí)出發(fā),甲騎自行車(chē),乙騎摩托車(chē),沿同一條直線公路相向勻速行駛.出發(fā)后經(jīng)小時(shí)兩人相遇.已知在相遇時(shí)乙比甲多行駛了千米,且摩托車(chē)的速度是自行車(chē)速度的倍.
(1)問(wèn)甲、乙行駛的速度分別是多少?
(2)甲、乙行駛多少小時(shí),兩車(chē)相距千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直接寫(xiě)出計(jì)算結(jié)果:
(1) -2-11 = (2) 5-(-12)=
(3) (-5)×(-6) = (4)
(5) = (6) =
(7)-3.5+3.5 = (8) =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過(guò)點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過(guò)點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+∠CHF=α,直接寫(xiě)出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中邊AB的垂直平分線分別交BC,AB于點(diǎn)D,E,AE=3cm,△ADC的周長(zhǎng)為9cm,則△ABC的周長(zhǎng)是( )
A. 10cm B. 12cm C. 15cm D. 17cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,彈性小球從P(2,0)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到正方形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第一次碰到正方形的邊時(shí)的點(diǎn)為P1,第二次碰到正方形的邊時(shí)的點(diǎn)為P2…,第n次碰到正方形的邊時(shí)的點(diǎn)為Pn,則P2018的坐標(biāo)是( )
A. (5,3) B. (3,5) C. (0,2) D. (2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)2014年12月28日“青煙威榮”城際鐵路正式開(kāi)通,從煙臺(tái)到北京的高鐵里程比普快里程縮短了81千米,運(yùn)行時(shí)間減少了9小時(shí),已知煙臺(tái)到北京的普快列車(chē)?yán)锍淘?026千米,高鐵平均時(shí)速是普快平均時(shí)速的2.5倍.
(1)求高鐵列車(chē)的平均時(shí)速;
(2)某日王老師要去距離煙臺(tái)大約630千米的某市參加14:00召開(kāi)的會(huì)議,如果他買(mǎi)到
當(dāng)日8:40從煙臺(tái)到該是的高鐵票,而且從該市火車(chē)站到會(huì)議地點(diǎn)最多需要1.5小時(shí).試問(wèn)在高鐵列車(chē)準(zhǔn)點(diǎn)到達(dá)的情況下他能在開(kāi)會(huì)之前趕到嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com