【題目】如圖,已知矩形OABC,以點O為坐標原點建立平面直角坐標系,其中A(2,0),C(0,3),點P以每秒1個單位的速度從點C出發(fā)在射線CO上運動,連接BP,作BEPBx軸于點E,連接PEAB于點F,設運動時間為t秒.

(1)t=2時,求點E的坐標;

(2)AB平分∠EBP時,求t的值.

(3)在運動的過程中,是否存在以P、O、E為頂點的三角形與△ABE相似.若存在,請求出點P的坐標;若不存在,請說明理由.

【答案】(1)E(5,0);(2)t=2;(3)存在;(0,)或(0,).

【解析】

(1)本題需先求出AB=AE,再求出DE=5,即可求出點E的坐標.
(2)本題需先求出CP=CB=2,即可求出t的值.
(3)本題需先證出△BCP∽△BAE,求出AE=t,再分兩種情形分別求解即可解決問題;

解:(1)當t=2時,PC=2,

BC=2,

PC=BC,

∴∠PBC=45°,

∴∠BAE=90°,

∴∠AEB=45°,

AB=AE=3,

∴OE=5,

∴點E的坐標是(5,0);

(2)當AB平分∠EBP時,

PBF=45°,

則∠CBP=CPB=45°,

∴CP=CB=2,

t=2;

(3)存在,

∵∠ABE+ABP=90°,

PBC+ABP=90°,

∴∠ABE=PBC,

∵∠BAE=BCP=90°,

∴△BCP∽△BAE,

,

t,

∵若△POE∽△EAB,

,

t1= ,t2=(舍去),

P的坐標為(0, );

當點Py軸的負半軸上時,若△POE∽△EAB,則有,無解,

若△POE∽△BAE,則有:,

解得t=3+ 3﹣(舍棄)

P的坐標為(0,)或(0,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,∠A30°,CDABD,BCD的周長為(62cm,則ABC的周長為( cm

A.92B.12C.124D.182

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 已知:如圖1,在RtABCRtA′B′C′中,AB=A′B′AC=A′C′,∠C=C′=90°.求證:RtABCRtA′B′C′全等.

1)請你用如果,那么…”的形式敘述上述命題;

2)如圖2,將ABCA′B′C′拼在一起(即:點A與點B′重合,點B與點A′重合),BCB′C′相交于點O,請用此圖證明上述命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點,若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關系如圖所示,下列結論:①甲步行的速度為60米/分;②乙走完全程用了30分鐘;③乙用12分鐘追上甲;④乙到達終點時,甲離終點還有360米;其中正確的結論有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的三個頂點均在格點上,請按要求完成下列各題:

1)畫線段ADBC且使AD=BC,連接CD;

2)線段AC的長為   ,CD的長為   AD的長為_____;

3ACD   三角形,四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的平分線分別交于點、,若,,,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線yx+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點POA上一動點,PCPD值最小時點P的坐標為.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

同步練習冊答案