【題目】如圖,在中,,和的平分線分別交于點、,若,,,則______.
【答案】6
【解析】
根據(jù)平行線的性質(zhì)可得∠EGB=∠GBC,∠DFC=∠FCB,根據(jù)角平分線的定義可得∠EBG=∠GBC,∠FCB=∠FCD,即可證明∠EBG=∠EGB,∠DFC=∠FCD,可得BE=GE,DF=DC,根據(jù)DE=GE+GF+DF即可求出GF的長.
∵ED//BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵BG和CF是和的平分線,
∴∠EBG=∠GBC,∠FCB=∠FCD,
∴∠EBG=∠EGB,∠DFC=∠FCD,
∴BE=GE,DF=DC,
∵,,,DE=GE+GF+DF,
∴GF=DE-GE-FD=DE-BE-CD=20-8-6=6,
故答案為:6
科目:初中數(shù)學 來源: 題型:
【題目】過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形OABC,以點O為坐標原點建立平面直角坐標系,其中A(2,0),C(0,3),點P以每秒1個單位的速度從點C出發(fā)在射線CO上運動,連接BP,作BE⊥PB交x軸于點E,連接PE交AB于點F,設運動時間為t秒.
(1)當t=2時,求點E的坐標;
(2)若AB平分∠EBP時,求t的值.
(3)在運動的過程中,是否存在以P、O、E為頂點的三角形與△ABE相似.若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,在△ABC中,AB=AC,點 D 是邊 BC 的中點.以BD為直徑作⊙O,交邊 AB于點P,連接PC,交AD于點E.
(1)求證:AD是⊙O的切線;
(2)當∠BAC=90°時,求證:CE=2PE;
(3)如圖2,當PC是⊙O的切線,E為AD 中點,BC=8,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,己知點A(8,0),點C(0,6),點B在x軸負半軸上,且AB=AC.
(1)求點B的坐標;
(2)如圖2,若點E為邊AC的中點,動點M從點B出發(fā)以每秒2個單位長度的速度沿線段BA向點A勻速運動,設點M運動的時間為t(秒);
①若△OME的面積為2,求t的值;
②如圖3,在點M運動的過程中,△OME能否成為直角三角形?若能,求出此時t的值,并寫出相應的點M的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點為內(nèi)一點,,為延長線上的一點,且.
(1)求的度數(shù);
(2)求證:平分;
(3)請判斷,,之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點(,﹣),點P(t,0)是x軸上的動點,拋物線與y軸交點為C,頂點為D.
(1)求該二次函數(shù)的解析式,及頂點D的坐標;
(2)求|PC﹣PD|的最大值及對應的點P的坐標;
(3)設Q(0,2t)是y軸上的動點,若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個公共點,求t的取值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,形如三角板的ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圓O的直徑DE=12cm,矩形DEFG的寬EF=6cm,矩形量角器以2cm/s的速度從左向右運動,在運動過程中,點D、E始終在BC所在的直線上,設運動時間為x(s),矩形量角器和ABC的重疊部分的面積為S(cm2).當x=0(s)時,點E與點C重合.(圖(3)、圖(4)、圖(5)供操作用).
(1)當x=3時,如圖(2),求S, 當x=6時,求S,當x=9時,求S;(直接寫結(jié)果)
(2)當3<x<6時,求S關(guān)于x的函數(shù)關(guān)系式;
(3)當6<x<9時,求S關(guān)于x的函數(shù)關(guān)系式;
(4)當x為何值時, ABC的斜邊所在的直線與半圓O所在的圓相切?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com