已知a=()-1,b=,c=(2014-π)0,d=|1-|,
(1)化簡這四個(gè)數(shù);
(2)把這四個(gè)數(shù),通過適當(dāng)運(yùn)算后使得結(jié)果為2.請列式并寫出運(yùn)算過程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將△ABC繞其中一個(gè)頂點(diǎn)順時(shí)針連續(xù)旋轉(zhuǎn)n′1、n′2、n′3所得到的三角形和△ABC的對稱關(guān)系是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點(diǎn)A(1,k)和點(diǎn)B(-1,-k).
(1)當(dāng)k=-2時(shí),求反比例函數(shù)的解析式;
(2)已知經(jīng)過原點(diǎn)O的兩條直線AB與CD分別與雙曲線(k>0)交于A、B和C、D,那么AB與CD互相平分,所以四邊形ACBD是平行四邊形.
問:平行四邊形ABCD能否成為矩形?能否成為正方形?若能,請說明直線AB、CD的位置關(guān)系;若不能,請說明理由
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知整數(shù)x滿足-5≤x≤5,y1=2x+1,y2=-x+4對任意一個(gè)x,m都取y1,y2中的較小值,則m的最大值是( )
A.1 B.3 C.9 D.11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(1)探究新知:
①如圖,已知AD∥BC,AD=BC,點(diǎn)M,N是直線CD上任意兩點(diǎn).求證:△ABM與△ABN的面積相等.
②如圖,已知AD∥BE,AD=BE,AB∥CD∥EF,點(diǎn)M是直線CD上任一點(diǎn),點(diǎn)G是直線EF上任一點(diǎn).試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結(jié)論應(yīng)用:
如圖③,拋物線的頂點(diǎn)為C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)D.試探究在拋物線上是否存在除點(diǎn)C以外的點(diǎn)E,使得△ADE與△ACD的面積相等? 若存在,請求出此時(shí)點(diǎn)E的坐標(biāo),若不存在,請說明理由.【改編】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某校舉行了“潔美家園”的演講比賽,賽后整理參賽同學(xué)的成績,將學(xué)生的成績分成 A、B、C、D四個(gè)等級,并制成了如下的條形統(tǒng)計(jì)圖和扇形圖(如圖1、圖2).
(1)補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué)校決定從本次比賽中獲得A和B的學(xué)生中各選出一名去參加市中學(xué)生環(huán)保演講比賽.已知A等中男生有2名,B等中女生有3 名,請你用“列表法”或“樹形圖法”的方法求出所選兩位同學(xué)恰好是一名男生和一名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com