【題目】如圖,在中,,是邊上的動點(不與點重合),將沿所在的直線翻折,得到,連接,則下列判斷:
①當(dāng)時,
②當(dāng)時,
③當(dāng)時,;
④長度的最小值是1.
其中正確的判斷是______(填入正確結(jié)論的序號)
【答案】①②④
【解析】
①由直角三角形斜邊上的中線等于斜邊的一半以及折疊的性質(zhì),易得,即可得;
②由,可得點在以為圓心,長為半徑的圓上,然后在由圓周角定理,求得答案;
③當(dāng)時,易得,再根據(jù)相似三角形對應(yīng)邊成比例,求得AP的長;
④易得,長度的最小值是1.
解:①∵在中,,
∴,,
由折疊的性質(zhì)可得:
∴,
∴
∴;故①正確;
②∵,
∴,
∴點在以為圓心,長為半徑的圓上,
∵由折疊的性質(zhì)可得:,
∴,
∴故②正確
③當(dāng)時, ,
∵,
∴,
∴
∵在中,由勾股定理可知
∴故③錯誤;
④由軸對稱的性質(zhì)可知:,
∵長度固定不變,
∵
∴的長度有最小值.
有最小值.故④正確.
故答案為:①②④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】云崗石窟位于山西大同市,是中國規(guī)模最大的古代石窟群之一,位于第五窟的三世佛的中央坐像是云岡石窟最大的佛像.某數(shù)學(xué)課題研究小組針對“三世佛的中央坐像的高度有多少米”這一問題展開探究,過程如下:
問題提出:
如圖①是三世佛的中央坐像,請你設(shè)計方案并求出它的高度.
方案設(shè)計:
如圖②,該課題研究小組通過研究設(shè)計了這樣一個方案,某同學(xué)在處用測角器測得佛像最高處的仰角,另一個同學(xué)在他的后方的處測得佛像底端的仰角.
數(shù)據(jù)收集:
通過查閱資料和實際測量:佛像底端到觀景臺的垂直距離為.
問題解決:
(1)根據(jù)上述方案及數(shù)據(jù),求佛像的高度;(結(jié)果保留整數(shù),參考數(shù)據(jù):,,,,,)
(2)在實際測量的過程中,有哪些措施可以減小測量數(shù)據(jù)產(chǎn)生的誤差?(寫出一條即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地七年級學(xué)生身高情況,隨機抽取部分學(xué)生,測得他們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列問題.
(1)填空:樣本容量為 ,a= ;
(2)把頻數(shù)分布直方圖補充完整;
(3)若從該地隨機抽取1名學(xué)生,估計這名學(xué)生身高低于160cm的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,并回答問題:
若x1,x2是方程ax2+bx+c=0的兩個實數(shù)根,則有ax2+bx+c=a(x﹣x1)(x﹣x2).即ax2+bx+c=ax2﹣a(x1+x2)x+ax1x2,于是b=﹣a(x1+x2),c=ax1x2.由此可得一元二次方程的根與系數(shù)關(guān)系:x1+x2=﹣,x1x2=.這就是我們眾所周知的韋達定理.
(1)已知m,n是方程x2﹣x﹣100=0的兩個實數(shù)根,不解方程求m2+n2的值;
(2)若x1,x2,x3,是關(guān)于x的方程x(x﹣2)2=t的三個實數(shù)根,且x1<x2<x3;
①x1x2+x2x3+x3x1的值;②求x3﹣x1的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
治理楊絮一一您選哪一項?(單選)
A.減少楊樹新增面積,控制楊樹每年的栽種量
B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹
C.選育無絮楊品種,并推廣種植
D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮
E.其他
根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)本次接受調(diào)查的市民共有 人;
(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是 ;
(3)請補全條形統(tǒng)計圖;
(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面內(nèi)和外一點,若過點的直線與有兩個不同的公共點,點為直線上的另一點,且滿足(如圖1所示),則稱點是點關(guān)于的密切點.
已知在平面直角坐標(biāo)系中, 的半徑為2,點.
(1)在點中,是點關(guān)于的密切點的為__________.
(2)設(shè)直線方程為,如圖2所示,
①時,求出點關(guān)于的密切點的坐標(biāo);
②的圓心為,半徑為2,若上存在點關(guān)于的密切點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面內(nèi)和外一點,若過點的直線與有兩個不同的公共點,點為直線上的另一點,且滿足(如圖1所示),則稱點是點關(guān)于的密切點.
已知在平面直角坐標(biāo)系中, 的半徑為2,點.
(1)在點中,是點關(guān)于的密切點的為__________.
(2)設(shè)直線方程為,如圖2所示,
①時,求出點關(guān)于的密切點的坐標(biāo);
②的圓心為,半徑為2,若上存在點關(guān)于的密切點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:
x | … | 0 | 1 | 2 | 3 | … | ||
y | … | 3 | 0 | 0 | m | … |
(1)直接寫出此二次函數(shù)的對稱軸 ;
(2)求b的值;
(3)直接寫出表中的m值,m= ;
(4)在平面直角坐標(biāo)系xOy中,畫出此二次函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)
①作線段AC的垂直平分線l,交AC于點O;
②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;
③連接DA、DC.
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com