【題目】若關(guān)于x的一元二次方程kx2﹣2x+1=0有實(shí)數(shù)根,則k的取值范圍是 .
【答案】k≤1且k≠0
【解析】解:∵關(guān)于x的一元二次方程kx2﹣2x+1=0有實(shí)數(shù)根, ∴△=b2﹣4ac≥0,
即:4﹣4k≥0,
解得:k≤1,
∵關(guān)于x的一元二次方程kx2﹣2x+1=0中k≠0,
所以答案是:k≤1且k≠0.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識(shí),掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點(diǎn)E,且交⊙O于點(diǎn)D,F(xiàn)是BA延長線上一點(diǎn),若∠CDB=∠BFD.
(1)求證:FD是⊙O的一條切線;
(2)若AB=10,AC=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子科技公司開發(fā)一種新產(chǎn)品,公司對(duì)經(jīng)營的盈虧情況每月最后一天結(jié)算1次.在1~12月份中,公司前x個(gè)月累計(jì)獲得的總利潤y(萬元)與銷售時(shí)間x(月)之間滿足二次函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k,二次函數(shù)y=a(x﹣h)2+k的一部分圖象如圖所示,點(diǎn)A為拋物線的頂點(diǎn),且點(diǎn)A、B、C的橫坐標(biāo)分別為4、10、12,點(diǎn)A、B的縱坐標(biāo)分別為﹣16、20.
(1)試確定函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k;
(2)分別求出前9個(gè)月公司累計(jì)獲得的利潤以及10月份一個(gè)月內(nèi)所獲得的利潤;
(3)在前12個(gè)月中,哪個(gè)月該公司一個(gè)月內(nèi)所獲得的利潤最多?最多利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E為邊長為1的正方形ABCD中CD邊上的一動(dòng)點(diǎn)(不含點(diǎn)C、D),以BE為邊作圖中所示的正方形BEFG
(1)求∠ADF的度數(shù)
(2)如圖2,若BF交AD于點(diǎn)H,連接EH,求證:HB平分∠AHE
(3)如圖3,連接AE、CG,作BM⊥AE于點(diǎn)M,BM交GC于點(diǎn)N,連接DN.當(dāng)E在CD上運(yùn)動(dòng)時(shí),求證:NC=NG
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點(diǎn)上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)
(1)過點(diǎn)C畫AB的平行線;
(2)過點(diǎn)B畫AC的垂線,垂足為點(diǎn)G;過點(diǎn)B畫AB的垂線,交AC的延長線于H.
(3)點(diǎn)B到AC的距離是線段 的長度,線段AB的長度是點(diǎn) 到直線
的距離.
(4)線段BG、AB的大小關(guān)系為:BG AB(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店把某種“大運(yùn)”紀(jì)念品按成本價(jià)提高50%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%優(yōu)惠售出,結(jié)果每件仍獲利2.4元,則這種紀(jì)念品的成本是
A.3元B.4.8元C.6元D.12元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,D為OA半徑的中點(diǎn),過D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于點(diǎn)F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF,BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com