【題目】解方程
(1)3x2﹣6x+1=0(用配方法)
(2)3(x﹣1)2=x(x﹣1)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=2,E為AB的中點,F為EC上一動點,P為DF中點,連接PB,則PB的最小值是( )
A.2B.4C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出△A1OB1.
(2)在旋轉(zhuǎn)過程中點B所經(jīng)過的路徑長為_______.
(3)求在旋轉(zhuǎn)過程中線段AB掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并直接寫出A、C兩點的坐標(biāo);
(3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并直接寫出點A2、B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過,,三點.
求拋物線的解析式;
若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,,點是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨點的位置變化而變化.
(1)如圖1,當(dāng)點在菱形內(nèi)部或邊上時,連接,與的數(shù)量關(guān)系是 ,與的位置關(guān)系是 ;
(2)當(dāng)點在菱形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,
請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).
(3) 如圖4,當(dāng)點在線段的延長線上時,連接,若 , ,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,∠AC平分∠BAD,連接BF.
(1)求證:AD⊥ED;
(2)若CD=4,AF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,P是AB邊上一動點,PD⊥AC于點D,點E在P的右側(cè),且PE=1,連接CE,P從點A出發(fā),沿AB方向運動,當(dāng)E到達點B時,P停止運動,在整個運動過程中,陰影部分面積S1+S2的大小變化的情況是( 。
A.一直減小B.一直增大
C.先增大后減小D.先減小后增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com