【題目】如圖,△ABC中,AB=AC,高BD、CE相交于點O,連接AO并延長交BC于點F,則圖中全等的直角三角形共有( 。
A. 4對B. 5對C. 6對D. 7對
【答案】C
【解析】
①△BDC≌△CEB,根據(jù)等邊對等角得:∠ABC=∠ACB,由高得:∠BDC=∠CEB=90°,所以利用AAS可證明全等;
②△BEO≌△CDO,加上對頂角相等,利用AAS可證明全等;
③△AEO≌△ADO,根據(jù)HL可證明全等;
④△ABF≌△ACF,根據(jù)SAS可證明全等;
⑤△BOF≌△COF,根據(jù)等腰三角形三線合一的性質(zhì)得:BF=FC,∠AFB=∠AFC,利用SAS可證明全等;
⑥△AOB≌△AOC,根據(jù)SAS可證明全等;
⑦△ABD≌△ACE,利用AAS可證明全等.
解:有7對全等三角形:
①△BDC≌△CEB,理由是:
∵AB=AC,
∴∠ABC=∠ACB,
∵BD和CE是兩腰上的高,
∴∠BDC=∠CEB=90°,
在△BDC和△CEB中,
∴△BDC≌△CEB(AAS),
∴BE=DC,
②△BEO≌△CDO,理由是:
在△BEO和△CDO中,
∴△BEO≌△CDO(AAS),
③△AEO≌△ADO,理由是:
由△BEO≌△CDO得:EO=DO,
在Rt△AEO和Rt△ADO中,
∴Rt△AEO≌Rt△ADO(HL),
∴∠EAO=∠DAO,
④△ABF≌△ACF,理由是:
在△ABF和△ACF中,
∴△ABF≌△ACF(SAS),
⑤△BOF≌△COF,理由是:
∵AB=AC,∠BAF=∠CAF,
∴BF=FC,∠AFB=∠AFC,
在△BOF和△COF中,
∴△BOF≌△COF(SAS),
⑥△AOB≌△AOC,理由是:
在△AOB和△AOC中,
∴△AOB≌△AOC(SAS),
⑦△ABD≌△ACE,理由是:
在△ABD和△ACE中,
∴△ABD≌△ACE(AAS).
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D,證明:△ABD≌△ACE,DE=BD+CE;
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角,請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加快城鄉(xiāng)對接,建設全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地大約要走多少千米?
(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做“十字形”.
(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“十字形”的有 ;
②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形 “十字形”.(填“是”或“不是”)
(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時針方向排列的四個動點,AC與BD交于點E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,當6≤AC2+BD2≤7時,求OE的取值范圍;
(3)如圖2,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(點A在點C的左側),B是拋物線與y軸的交點,點D的坐標為(0,﹣ac),記“十字形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4.求同時滿足下列三個條件的拋物線的解析式;
①= ;②= ;③“十字形”ABCD的周長為12.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段達到節(jié)水的目的,該市自來水收貴的價目表如下(注:水費按月份結算,表示立方米)
價目表 | |
每月用水量 | 價格 |
不超過的部分 | |
超出不超出的部分 | |
超出的部分 |
某戶居民1月份和2月份的用水量分別為和,則應收水費分別是 元和 元
若該戶居民月份用水量(其中),則應收水費多少元? (用含的式子表示,并化簡)
若該戶居民兩個月共用水 (月份用水量超過月份),設月份用水,求該戶居民兩個月共交水費多少元? (用含 的式子表示,并化簡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AC上取點B,在其同一側作兩個等邊三角形△ABD 和△BCE ,連接AE,CD與GF,下列結論正確的有( )
① AE DC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
A.①②④B.①③⑤C.①③④⑤D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D、E分別是等邊三角形ABC的邊BC、AC上的點,連接AD、BE交于點O,且△ABD≌△BCE.
(1)若AB=3,AE=2,則BD= ;
(2)若∠CBE=15°,則∠AOE= ;
(3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,點E是AD上的一點,有AE=4,BE的垂直平分線交BC的延長線于點F,連結EF交CD于點G.若G是CD的中點,則BC的長是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD是經(jīng)過∠BCA頂點C的一條直線,CA=CB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上.
①如圖1,若∠BCA=90°,∠α=90°,則BE CF;
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關于∠α與∠BCA關系的條件 ,使①中的結論仍然成立,并說明理由;
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鲫P于EF,BE,AF三條線段數(shù)量關系的合理猜想: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com