【題目】如圖,菱形ABCD中,AE⊥BC于點(diǎn)E,∠BAE=30°,AD=4cm.
(1)求菱形ABCD的各角的度數(shù);
(2)求AE的長(zhǎng).
【答案】⑴菱形各角的度數(shù)為60°、120°、60°、120°;⑵AE的長(zhǎng)為cm
【解析】
(1)由AE⊥BC,得∠AEB=90°,根據(jù)三角形的內(nèi)角和即可求出∠B=60°,
根據(jù)菱形的對(duì)角相等,鄰角互補(bǔ)即可求解.
(2)根據(jù)菱形的四條邊相等得到AB=AD=4,因?yàn)椤?/span>BAE=30°,所以BE=2cm,利用勾股定理即可求出AE的長(zhǎng).
⑴ ∵AE⊥BC
∴∠AEB=90°
∵∠BAE=30°
∴∠B=60°
∵菱形ABCD
∴∠D=∠B=60°,AB∥CD
∴∠BAD=∠C=120°
答:菱形各角的度數(shù)為60°、120°、60°、120°
⑵ ∵菱形ABCD
∴AB=AD=4
∵∠BAE=30°
∴BE=2
∴AE=
答:AE的長(zhǎng)為cm
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(6,8).頂點(diǎn)A在x軸的正半軸上,反比例函數(shù)的圖象經(jīng)過(guò)頂B點(diǎn).
(1)求點(diǎn)A和B的坐標(biāo);
(2)求k值及直線(xiàn)AB對(duì)應(yīng)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解七年級(jí)名學(xué)生其中數(shù)學(xué)考試情況,從中抽取了名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行了統(tǒng)計(jì),下面個(gè)判斷中正確的有( )個(gè).
①這種調(diào)查的方式是抽樣調(diào)查;②名學(xué)生是總體;③每名學(xué)生的數(shù)學(xué)成績(jī)是個(gè)體;④名學(xué)生是總體的一個(gè)樣本;⑤樣本容量是.
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某市城區(qū)地圖(比例尺1∶9000)上,新安大街的圖上長(zhǎng)度與光華大街的圖上長(zhǎng)度分別是16 cm,10 cm.
(1)新安大街與光華大街的實(shí)際長(zhǎng)度各是多少米?
(2)新安大街與光華大街的圖上長(zhǎng)度之比是多少?它們的實(shí)際長(zhǎng)度之比呢?你發(fā)現(xiàn)了什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)邊長(zhǎng)為的正方形的中心在直線(xiàn)上,它的一組對(duì)邊垂直于直線(xiàn),半徑為的圓的圓心在直線(xiàn)上運(yùn)動(dòng),、兩點(diǎn)之間的距離為.
()如圖①,當(dāng)時(shí),填表:
、、之間的數(shù)量關(guān)系 | ⊙與正方形的公共點(diǎn)個(gè)數(shù) |
__________ | |
__________ | |
__________ |
()如圖②,⊙與正方形有個(gè)公共點(diǎn)、、、、,求此時(shí)與之間的數(shù)量關(guān)系:
()由()可知,、、之間的數(shù)量關(guān)系和⊙與正方形的公共點(diǎn)個(gè)數(shù)密切相關(guān).當(dāng)時(shí),請(qǐng)根據(jù)、、之間的數(shù)量關(guān)系,判斷⊙與正方形的公共點(diǎn)個(gè)數(shù).
()當(dāng)與之間滿(mǎn)足()中的數(shù)量關(guān)系時(shí),⊙與正方形的公共點(diǎn)個(gè)數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(a,3),點(diǎn)C(5,c),點(diǎn)B的縱坐標(biāo)為6且橫縱坐標(biāo)互為相反數(shù),直線(xiàn)AC軸,直線(xiàn)CB軸:
(1)寫(xiě)出A、B、C三點(diǎn)坐標(biāo);
(2)求△ABC的面積;
(3)若P為線(xiàn)段OB上動(dòng)點(diǎn)且點(diǎn)P的橫、縱坐標(biāo)互為相反數(shù),當(dāng)△BCP的面積大于12小于16時(shí),求點(diǎn)P橫坐標(biāo)取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn),點(diǎn)B在直線(xiàn)MN上,點(diǎn)A為直線(xiàn)PQ上一動(dòng)點(diǎn),連接AB.在直線(xiàn)AB的上方做,使,設(shè),的平分線(xiàn)所在直線(xiàn)交PQ于點(diǎn)D.
(1)如圖1,若,且點(diǎn)C恰好落在直線(xiàn)MN上,則________;
(2)如圖2,若,且點(diǎn)C在直線(xiàn)MN右側(cè),求的度數(shù);
(3)若點(diǎn)C在直線(xiàn)MN的左側(cè),求的度數(shù).(用含有α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1,可以得到這個(gè)等式,請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出圖2中所表示的數(shù)學(xué)等式______________;(最后結(jié)果)
(2)根據(jù)整式乘法的運(yùn)算法則,通過(guò)計(jì)算驗(yàn)證上述等式;
(3)利用(1)中得到的結(jié)論,解決問(wèn)題:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值;
(4)小明同學(xué)用圖3中x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出一個(gè)面積為(5a+2b)(3a+5b)的長(zhǎng)方形,求x+y+z的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com