【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3 , …組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長(zhǎng)度,則第2017秒時(shí),點(diǎn)P的坐標(biāo)是( )

A.(2016,0)
B.(2017,1)
C.(2017,﹣1)
D.(2018,0)

【答案】B
【解析】解:以時(shí)間為點(diǎn)P的下標(biāo).
觀察,發(fā)現(xiàn)規(guī)律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,
∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).
∵2017=504×4+1,
∴第2017秒時(shí),點(diǎn)P的坐標(biāo)為(2017,1).
故選B
以時(shí)間為點(diǎn)P的下標(biāo),根據(jù)半圓的半徑以及部分點(diǎn)P的坐標(biāo)可找出規(guī)律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此規(guī)律即可得出第2017秒時(shí),點(diǎn)P的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD為平行四邊形,DFEC和BCGH為正方形.求證:AC⊥EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過(guò)點(diǎn)(1,8),M為它的頂點(diǎn).

(1)求拋物線的解析式;
(2)求△MCB的面積SMCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,取BC的中點(diǎn)P.當(dāng)點(diǎn)B從點(diǎn)O向x軸正半軸移動(dòng)到點(diǎn)M(2,0)時(shí),則點(diǎn)P移動(dòng)的路線長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個(gè)動(dòng)點(diǎn),過(guò)C作CE垂直于BD的延長(zhǎng)線,垂足為E,如圖1

(1)求證:ADCD=BDDE;
(2)若BD是邊AC的中線,如圖2,求 的值;

(3)如圖3,連接AE.若AE=EC,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長(zhǎng)進(jìn)行問(wèn)卷調(diào)查,發(fā)出問(wèn)卷140份,每位學(xué)生家長(zhǎng)1份,每份問(wèn)卷僅表明一種態(tài)度,將回收的問(wèn)卷進(jìn)行整理(假設(shè)回收的問(wèn)卷都有效),并繪制了如圖兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問(wèn)題:
(1)回收的問(wèn)卷數(shù)為份,“嚴(yán)加干涉”部分對(duì)應(yīng)扇形的圓心角度數(shù)為
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整
(3)若將“稍加詢(xún)問(wèn)”和“從來(lái)不管”視為“管理不嚴(yán)”,已知全校共1500名學(xué)生,請(qǐng)估計(jì)該校對(duì)孩子使用手機(jī)“管理不嚴(yán)”的家長(zhǎng)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線y=x+4經(jīng)過(guò)A,C兩點(diǎn).
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動(dòng)點(diǎn)P.
①如圖1,當(dāng)點(diǎn)P運(yùn)動(dòng)到某位置時(shí),以AP,AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);

②如圖2,過(guò)點(diǎn)O,P的直線y=kx交AC于點(diǎn)E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花木公司在20天內(nèi)銷(xiāo)售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷(xiāo)售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.

時(shí)間x(天)

0

4

8

12

16

20

銷(xiāo)量y1(萬(wàn)朵)

0

16

24

24

16

0

另一部分鮮花在淘寶網(wǎng)銷(xiāo)售,網(wǎng)上銷(xiāo)售日銷(xiāo)售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如圖所示.

(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫(xiě)出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷(xiāo)售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷(xiāo)售策略使得銷(xiāo)售量發(fā)生了變化,并寫(xiě)出銷(xiāo)售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷(xiāo)售總量為y萬(wàn)朵,寫(xiě)出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷(xiāo)售總量y最大,并求出此時(shí)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富學(xué)生課外小組活動(dòng),培養(yǎng)學(xué)生動(dòng)手操作能力,王老師讓學(xué)生把5m長(zhǎng)的彩繩截成2m或1m的彩繩,用來(lái)做手工編織,在不造成浪費(fèi)的前提下,你有幾種不同的截法( 。
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案