【題目】為迎接·黨的生日,某校準(zhǔn)備組織師生共310人參加一次大型公益活動,租用4輛大客車和6輛小客車恰好全部坐滿,已知每輛大客車的座位數(shù)比小客車多15.

(1)求每輛大客車和小客車的座位數(shù);

(2)經(jīng)學(xué)校統(tǒng)計,實際參加活動人數(shù)增加了40人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為使所有參加活動的師生均有座位,最多租用小客車多少輛?

【答案】(1)每輛大客車和每輛小客車的座位數(shù)分別為40個和25.(2)最多租用小客車3

【解析】

(1)設(shè)每輛大客車和每輛小客車的座位數(shù)分別為個和個,結(jié)合每輛大客車的座位數(shù)比小客車多15個以及師生共301人參加一次大型公益活動,列出方程組,解方程組即可求解;

(2)根據(jù)(1)中所求,利用總?cè)藬?shù)為310+40,列出不等式,解不等式即可求解.

1)設(shè)每輛大客車和每輛小客車的座位數(shù)分別為個和個,依題意得,

答:每輛大客車和每輛小客車的座位數(shù)分別為40個和25.

(2)設(shè)租用小客車輛,則租用大客車輛,依題意得,

.

解得

為整數(shù),

的最大值為3.

答:最多租用小客車3輛.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PEAB于E,連接PQ交AB于D.

(1)當(dāng)BQD=30°時,求AP的長;

(2)當(dāng)運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D在AB上,在下列四個條件中:①ACD=B;②ADC=ACB;③AC2=ADAB;④ABCD=ADCB,能滿足ADCACB相似的條件是( )

A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,過B,C兩點的⊙OAC于點D,交AB于點E,連接EO并延長交⊙O于點F.連接BF,CF.若∠EDC=135°,CF=,AE2+BE2的值為 ( )

A. 8 B. 12 C. 16 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)們每月零花錢數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分學(xué)生,并根據(jù)調(diào)查結(jié)果繪制出如下不完整的統(tǒng)計圖表.

請根據(jù)以上圖表,解答下列問題:

(1)這次被調(diào)查的人數(shù)共有 人,a= ;

(2)計算并補(bǔ)全頻數(shù)分布直方圖;

(3)請估計該校1500名學(xué)生中每月零花錢數(shù)額低于90元的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB20°,點M、N分別是邊OA、OB上的定點,點P,Q分別是邊OB、OA上的動點,記∠MPQα,∠PQNβ,當(dāng)MPPQQN最小時,則βα的值為(

A.19°B.40°C.D.29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A0,b)、點Ba,0)、點Dd,0)且a、bc滿足DEx軸且∠BED=ABD,BEy軸于點C,AEx軸于點F

1)求點AB、D的坐標(biāo);

2)求點C、E、F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

1)直接寫出點A,BC關(guān)于x軸對稱的點A1,B1,C1的坐標(biāo);.

2)在圖中作出ABC關(guān)于y軸對稱圖形A2B2C2

3)計算ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么這個三角形叫“恰等三角形”,這條中線叫“恰等中線”.

(直角三角形中的“恰等中線”)

(1)如圖1,在△ABC中,∠C=90°,AC,BC=2,AM為△ABC的中線.求證:AM是“恰等中線”.

(等腰三角形中的“恰等中線”)

2)已知,等腰△ABC是“恰等三角形”,ABAC20,求底邊BC的平方.

(一般三角形中的“恰等中線”)

3)如圖2,若AM是△ABC的“恰等中線”,則BC2,AB2,AC2之間的數(shù)量關(guān)系為

查看答案和解析>>

同步練習(xí)冊答案