【題目】如圖,在ABC中,∠ACB=90°,過B,C兩點的⊙OAC于點D,交AB于點E,連接EO并延長交⊙O于點F.連接BF,CF.若∠EDC=135°,CF=,AE2+BE2的值為 ( )

A. 8 B. 12 C. 16 D. 20

【答案】C

【解析】

根據(jù)圓內(nèi)接四邊形的性質(zhì)及鄰補角的定義可得∠ADE=∠ABC=45°,再證得∠ADE=∠A=45°即可得AE=AD;根據(jù)直徑所對的圓周角是直角可得∠FCE=90°,在Rt△EFC中求得EF=4;連接BD,可證得BD為為⊙O的直徑,在Rt△BDE中根據(jù)勾股定理可得,由此即可得結(jié)論.

∵∠EDC=135°,

∴∠ADE=45°,∠ABC=180°-∠EDC =180°-135°=45°;

∵∠ACB=90°,

∴∠A=45°,

∴∠ADE=∠A=45°,

∴AE=AD,∠AED=90°;

∵EF 為⊙O的直徑,

∴∠FCE=90°,

∵∠ABC=∠EFC=45°,CF=,

∴EF=4;

連接BD,

∵∠AED=90°,

∴∠BED=90°,

∴BD 為⊙O的直徑,

∴BD=4;

Rt△BDE中,,

AE2+BE2=16.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】雙十一購物節(jié)即將到來,某商場設(shè)計了兩種的促銷方案,并有以下兩種銷售量預(yù)期.預(yù)期一:第1步,銷售量擴大為原來的a.2步,再擴大為第1步銷售量的b.預(yù)期二:第1步,銷售量擴大為原來的倍;第2步,再擴大為第1步銷售量的倍;其中a,b為不相等的正數(shù),請問兩種預(yù)期中,哪種銷售量更多?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的重心,,,的延長線分別交,于點,,的值為________;

如圖的重心.,連接,,

,證明:

設(shè)的重心,,,當為直角三角形時,請直接寫出,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一部記錄片播放了關(guān)于地震的資料及一個有關(guān)地震預(yù)測的討論,一位專家指出:在未來20年,A城市發(fā)生地震的機會是三分之二

對這位專家的陳述下面有四個推斷:

×20≈13.3,所以今后的13年至14年間,A城市會發(fā)生一次地震;

大于50%,所以未來20年,A城市一定發(fā)生地震;

在未來20年,A城市發(fā)生地震的可能性大于不發(fā)生地震的可能性;

不能確定在未來20年,A城市是否會發(fā)生地震;

其中合理的是(  。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個,超市在某天提供的早餐食品為菜包、面包、雞蛋、油條四樣食品.

(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是________事件(填“隨機”“必然”或“不可能”);

(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,ADBC,∠ABC=90°AB=BC,EAB上一點,AE=AD,且BFCD,AFCE的延長線于F.連接DE交對角線ACH.下列結(jié)論:①AC垂直平分ED;②AE=BE;③CE=2BF;④BE=2EF.其中結(jié)論正確的是_______(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接·黨的生日,某校準備組織師生共310人參加一次大型公益活動,租用4輛大客車和6輛小客車恰好全部坐滿,已知每輛大客車的座位數(shù)比小客車多15.

(1)求每輛大客車和小客車的座位數(shù);

(2)經(jīng)學校統(tǒng)計,實際參加活動人數(shù)增加了40人,學校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為使所有參加活動的師生均有座位,最多租用小客車多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】楊陽同學沿一段筆直的人行道行走,在由A步行到達B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標語,其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標語CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形中,頂角等于的等腰三角形稱為黃金三角形,如圖,在中,已知:,且

在圖中,用尺規(guī)作的垂直平分線交,并連接(保留作圖痕跡,不寫作法);

是不是黃金三角形?如果是,請給出證明;如果不是,請說明理由;

設(shè),試求的值;

如圖,在中,已知,且,請直接寫出的值.

查看答案和解析>>

同步練習冊答案