【題目】解下列方程:
(1)4-m=-m; (2)56-8x=11+x;
(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.
【答案】(1) m=-10;(2)x=5;(3)x=4;(4)x=1.
【解析】試題分析:(1)移項、合并同類項后,系數(shù)化為1即可得方程的解;(2)移項、合并同類項后,系數(shù)化為1即可得方程的解;(3)移項、合并同類后項即可得方程的解;(4)移項、合并同類項后,系數(shù)化為1即可得方程的解.
試題解析:
(1) 移項,得-m+m=-4.
合并同類項,得m=-4.
系數(shù)化為1,得m=-10.
(2) 移項,得-8x-x=11-56.
合并同類項,得-9x=-45.
系數(shù)化為1,得x=5.
(3) 移項,得x-x=5-1.
合并同類項,得x=4.
(4) 移項,得-5x+7x-2x-8x=1-3-6.
合并同類項,得-8x=-8.
系數(shù)化為1,得x=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一線城市對出租車營運價進行了調(diào)整,調(diào)價前后的收費標(biāo)準(zhǔn)對比如下:調(diào)整前,3公里及3公里以內(nèi)12.5元,3公里后里程價2.4元/公里,無返空費;調(diào)整后, 2公里及2公里以內(nèi)10元,2公里后里程價2.4元/公里,超過25公里部分,按里程價的30%加收返空費.
(1)請你幫忙計算一下,調(diào)價后,若乘客乘坐出租車的行程為8公里,他比以前少付了多少錢(不考慮紅燈等因素)?
(2)網(wǎng)上流傳“24公里換車”規(guī)避返空費,即乘客的行程超過25公里,就在24公里處下車,換乘另一輛出租車.但其實并不是所有行程超過25公里的乘客都需要換車.
例如:①若行程為30公里:不換車,總費用為:
10+23×2.4+5×2.4×130%=80.8元;
換車,總費用為:10+22×2.4+10+4×2.4=82.4元,因此,行程30公里若換車,則費用反而增加2.4元.
②若行程為40公里,不換車,總費用為:
10+23×2.4+15×2.4×130%=112元,若換車,總費用為:10+22×2.4+10+2.4×14=106.4元,則可節(jié)約5.6元.
若設(shè)行程為x 公里(26<x<48 ),請用含x的式子分別表示出不換車的費用和換車的費用,并幫忙計算一下,行程超過多少公里后換車會就會節(jié)約費用(不考慮紅燈等因素).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列由四舍五入得到的近似數(shù)說法正確的是( )
A.0.720精確到百分位
B.5.078×104精確到千分位
C.3.6萬精確到十分位
D.2.90精確到0.01
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為( )
A.7
B.14
C.17
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在紙上畫了一條數(shù)軸后,折疊紙面,使數(shù)軸上表示1的點與表示﹣3的點重合,此時點A與點B也重合,若數(shù)軸上A、B兩點之間的距離為2018(A在B的左側(cè)),則A點表示的數(shù)為( )
A. ﹣1008 B. ﹣1009 C. ﹣1010 D. ﹣1011
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(x1 , y1)、B(x2 , y2)在二次函數(shù)y=(x﹣1)2+1的圖象上,若x1>x2>1,則y1y2(填“>”、“<”或“=”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,將直線在x軸下方的部分沿x軸翻折,得到一個新函數(shù)的圖象(圖中的“V形折線”).
(1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;
(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點C(1,a),點D是線段AC上一動點(不包括端點),過點D作x軸的平行線,與新函數(shù)圖象交于另一點E,與雙曲線交于點P.
①試求△PAD的面積的最大值;
②探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com