【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)Ax軸外的一點(diǎn),若平面內(nèi)的點(diǎn)B滿(mǎn)足:線(xiàn)段AB的長(zhǎng)度與點(diǎn)Ax軸的距離相等,則稱(chēng)點(diǎn)B是點(diǎn)A的“等距點(diǎn)”.

(1)若點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)(2,2),(1,),,1)中,點(diǎn)A的“等距點(diǎn)”是_______________;

(2)若點(diǎn)M(1,2)和點(diǎn)N(1,8)是點(diǎn)A的兩個(gè)“等距點(diǎn)”,求點(diǎn)A的坐標(biāo);

(3)記函數(shù))的圖象為,的半徑為2,圓心坐標(biāo)為.若在上存在點(diǎn)M上存在點(diǎn)N,滿(mǎn)足點(diǎn)N是點(diǎn)M的“等距點(diǎn)”,直接寫(xiě)出t的取值范圍.

【答案】(1)詳見(jiàn)解析;(2)點(diǎn)的坐標(biāo)為.(3).

【解析】

(1)根據(jù)等距點(diǎn)的定義可求點(diǎn)A的等距點(diǎn)的坐標(biāo);

(2)根據(jù)等距點(diǎn)的定義可求點(diǎn)A的坐標(biāo);

(3)根據(jù)點(diǎn)N是點(diǎn)M等距點(diǎn)”, 易知當(dāng)點(diǎn)N在⊙T上運(yùn)動(dòng)時(shí),點(diǎn)ML上運(yùn)動(dòng),由此可求出t的取值范圍

(1);

(2)∵點(diǎn)和點(diǎn)是點(diǎn)A的兩個(gè)等距點(diǎn)” ,

∴點(diǎn)A在線(xiàn)段MN的垂直平分線(xiàn)上.

設(shè)與其垂直平分線(xiàn)交于點(diǎn),

,

.

∴點(diǎn)的坐標(biāo)為

(3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB、AC邊的垂直平分線(xiàn)分別交BC邊于點(diǎn)M、N

1)如圖①,若∠BAC110°,則∠MAN   °,若△AMN的周長(zhǎng)為9,則BC 

2)如圖②,若∠BAC135°,求證:BM2+CN2MN2;

3)如圖③,∠ABC的平分線(xiàn)BPAC邊的垂直平分線(xiàn)相交于點(diǎn)P,過(guò)點(diǎn)PPH垂直BA的延長(zhǎng)線(xiàn)于點(diǎn)H.若AB5CB12,求AH的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)沿邊從點(diǎn)向點(diǎn)的速度移動(dòng);同時(shí),點(diǎn)從點(diǎn)沿邊向點(diǎn)的速度移動(dòng),設(shè)點(diǎn)、移動(dòng)的時(shí)間為.問(wèn):

當(dāng)為何值時(shí)的面積等于?

當(dāng)為何值時(shí)是直角三角形?

是否存在的值,使的面積最小,若存在,求此時(shí)的值及此時(shí)的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來(lái)的45°改為36°,已知原傳送帶BC長(zhǎng)為4米,求新傳送帶AC的長(zhǎng)及新、原傳送帶觸地點(diǎn)之間AB的長(zhǎng).(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°0.59,cos36°0.1,tan36°0.73,1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小董設(shè)計(jì)的作已知圓的內(nèi)接正三角形的尺規(guī)作圖過(guò)程.

已知:⊙O.

求作:⊙O的內(nèi)接正三角形.

作法:如圖,

①作直徑AB;

②以B為圓心,OB為半徑作弧,與⊙O交于C,D兩點(diǎn);

③連接AC,AD,CD.

所以△ACD就是所求的三角形.

根據(jù)小董設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明:在⊙O中,連接OC,OD,BC,BD,

OC=OB=BC,

∴△OBC為等邊三角形(_______________)(填推理的依據(jù)).

∴∠BOC=60°.

∴∠AOC=180°-BOC=120°.

同理∠AOD=120°,

∴∠COD=AOC=AOD=120°.

AC=CD=AD(_______________)(填推理的依據(jù)).

∴△ACD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫(xiě)出kx+b-<0時(shí)x的取值范圍;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)你站在博物館的展覽廳中時(shí),你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點(diǎn)P距地面2.5米,最低點(diǎn)Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時(shí),站在此處觀賞最理想,則此時(shí)E到墻壁的距離為( )米.

A. 1 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的函數(shù)y=(a+2)x2﹣(2a﹣1)x+a﹣2的圖象與坐標(biāo)軸有兩個(gè)交點(diǎn),則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,

1)作出關(guān)于軸對(duì)稱(chēng)的,并寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo);

2)請(qǐng)計(jì)算的面積;

查看答案和解析>>

同步練習(xí)冊(cè)答案