【題目】(知識回顧)

我們把連結(jié)三角形兩邊中點的線段叫做三角形的中位線,并且有:三角形的中位線平行于第三邊,并且等于第三邊的一半.

(定理證明)

將下列的定理證明補充完整:

已知:如圖①,在ABC中,點D、E分別是邊ABAC中點,連結(jié)DE

求證:

證明:

(定理應用)

如圖②,在ABC中,AB10,∠ABC60°,點PQ分別是邊AC、BC的中點,連結(jié)PQ

1)線段PQ的長為   

2)以點C為一個端點作線段CDCDAB不平行),連結(jié)AD,取AD的中點M,連結(jié)PM、QM

①在圖②中補全圖形.

②當∠PQM=∠PMQ時,求CD的長.

③在②的條件下,當PQM面積最大時,直接寫出∠BCD的度數(shù).

【答案】【定理證明】見解析;【定理應用】(15;(2)①補全圖形②如圖所示,見解析;②CD10;③當PQM面積最大時,∠BCD的度數(shù)為30°150°

【解析】

定理證明:根據(jù)題意寫出求證,根據(jù)相似三角形的判定定理和性質(zhì)定理證明結(jié)論;

定理應用:1)根據(jù)三角形中位線定理解答;

2)①根據(jù)題意補全圖形;

②根據(jù)三角形中位線定理得到CDAB;

③分圖③和圖④兩種情況解答.

已知:如圖,在ABC中,點D、E分別是邊AB、AC中點,連結(jié)DE

求證:DEBCDEBC

證明:D、E分別是AB、DC中點,

,又AA,

∴△ADE∽△ABC

∴∠ADEB,

DEBC,DEBC

定理應用:

1P、Q分別是邊ACBC的中點,

PQAB5,

故答案為:5;

2補全圖形如圖所示:

②∵∠PQMPMQ

PMPQ,

P、QM分別是AC、BC、AD中點,

AB2PQ,CD2MP

CDAB10;

由三角形的面積公式可知,當PMPQ時,PQM面積最大,

如圖,BCD90°B90°60°30°,

如圖BCD1800°30°150°,

綜上所述,當PQM面積最大時,BCD的度數(shù)為30°150°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90o,以BC為直徑的半圓⊙OAC于點D,點EAB的中點,連接DE并延長,交CB延長線于點F.

(1)判斷直線DF與⊙O的位置關(guān)系,并說明理由;

(2)CF8,DF4,求⊙O的半徑和AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD,對角線AC、BD相交于點O,AC6,BD8.點EAB邊上一點,求作矩形EFGH,使得點F、G、H分別落在邊BCCD、AD上.設(shè) AEm

1)如圖①,當m1時,利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)

2)寫出矩形EFGH的個數(shù)及對應的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC

1)用無刻度的直尺和圓規(guī)作ABC的外接圓;(保留畫圖痕跡)

2)若AB10,BC16,求ABC的外接圓半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O是坐標原點,BC兩點的坐標分別為(3,-1)、(21).

1)以O點為位似中心在y軸的左側(cè)將OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

2B點的對應點B′的坐標是 ;C點的對應點C′的坐標是 ;

3)在BC上有一點Pxy),按(1)的方式得到的對應點P′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點,點DAB的延長線上,∠BCD=BAC.

1)求證:CD是⊙O的切線.

2)若∠D=30°,BD=2,求⊙O的半徑

3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)將標有數(shù)字1、23、4的四張卡片洗勻后,背面朝上放在桌子上,所有卡片的形狀、大小都完全相同.現(xiàn)隨機從中抽取一張卡片將其上面的數(shù)字作為十位上的數(shù),然后放回洗勻,再隨機抽取一張卡片,將其上面的數(shù)字作為個位上的數(shù),組成兩位數(shù).

1)請用列表或畫樹狀圖的方法表示出所有可能出現(xiàn)的結(jié)果:

2)求這個兩位數(shù)恰好能被3整除的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進一批單價為8元的商品,經(jīng)調(diào)研發(fā)現(xiàn),這種商品每天的銷售量y(件)是關(guān)于銷售單價x(元)的一次函數(shù),其關(guān)系如下表:

x()

10

11

12

13

14

y(件)

100

90

80

70

60

1)求yx之間的關(guān)系式;

2)設(shè)商店每天銷售利潤為w(元),求出wx之間的關(guān)系式,并求出每天銷售單價定為多少時利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線軸,軸分別交于點,,拋物線經(jīng)過點,將點向右平移5個單位長度,得到點,若拋物線與線段恰有一個公共點,結(jié)合函數(shù)圖象,則的取值范圍__________

查看答案和解析>>

同步練習冊答案