【題目】某校有3600名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

1)參與本次問卷調查的學生共有    人,其中選擇D類的人數(shù)有    人;

2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角的度數(shù),并補全C對應的條形統(tǒng)計圖;

3)若將AB、CDE這四類上學方式視為綠色出行,請估計該校選擇綠色出行的學生人數(shù).

【答案】145072;(2,答案見解析;(33456人.

【解析】

(1)A的人數(shù)除以A所占總人數(shù)的百分比即得總的學生數(shù);用D所占總人數(shù)的百分比乘以總的學生數(shù)即得D的學生人數(shù);

(2)100%減去A、BC、D、F所占的百分比,得到E所占的百分比,然后再乘360°,即得到E類對應的圓心角;用20%乘以總的學生數(shù)即得到C類的學生數(shù);

(3)3600×4%即得到F類學生的人數(shù),再用3600減去F類學生數(shù)即可.

(1)A的人數(shù)除以A占總人數(shù)的比值:162÷36%=450()

故本次問卷調查的學生共有450人,

其中D類的人數(shù)有:450×16%=72().

故答案為:共有460人,D類的人數(shù)有72.

(2)E類學生占總人數(shù)的百分比為:1-36%-14%-20%-16%-4%=10%,

E類對應的圓心角為:10%×360°=36°

C類學生為:20%×450=90(),如下圖所示:

故答案為:36°.

(3)3600名學生中,F類所占的人數(shù)為:3600×4%=144()

故選擇綠色出行的學生人數(shù)為:3600-144=3456()

故答案為:該校選擇綠色出行的學生人數(shù)為3456()

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=4,AD=12,將矩形紙片折疊,使點C落在AD邊上的點M處,折痕為PE,此時PD=3.

(1)求MP的值;

(2)在AB邊上有一個動點F,且不與點A,B重合.當AF等于多少時,MEF的周長最小?

(3)若點G,Q是AB邊上的兩個動點,且不與點A,B重合,GQ=2.當四邊形MEQG的周長最小時,求最小周長值.(計算結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售的籃球和足球的進貨價格分別是每個30元,40元.商場銷售5個籃球和1個足球,可獲利76元;銷售6個籃球和3個足球,可獲利120元.

1)求該商場籃球和足球的銷售價格分別是多少?

2)商場準備用不多于2500元的資金購進籃球和足球共70個,問最少需要購進籃球多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為a的正方形中減掉一個邊長為b的小正方形(ab)把余下的部分再剪拼成一個長方形.

1)如圖1,陰影部分的面積是: ;

2)如圖2,是把圖1重新剪拼成的一個長方形,陰影部分的面積是 ;

3)比較兩陰影部分面積,可以得到一個公式是 ;

4)運用你所得到的公式,計算:99.8×100.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=5cm,∠ADC=120°,點EF同時由A、C兩點出發(fā),分別沿ABCB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經過t秒△DEF為等邊三角形,則t的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】認真觀察圖26.14個圖中陰影部分構成的圖案,回答下列問題:

1)請寫出這四個圖案都具有的兩個共同特征.

特征1_________________________________________________;

特征2_________________________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACF≌△DBE,其中點A、B、CD在一條直線上.

1)若BEAD,∠F=62°,求∠A的大小.

2)若AD=9cm,BC=5cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結論正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE、PF分別交AB、AC于點E、F,當∠EPF△ABC內繞頂點P旋轉時(點E不與A、B重合),給出以下四個結論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結論中始終正確的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案