精英家教網 > 初中數學 > 題目詳情

【題目】求證:在直角三角形中至少有一個角不大于45°.

已知:如圖所示,△ABC中,∠C=90°,求證:∠A,∠B中至少有一個不大于45°.

證明:假設__________,則∠A__________45°,∠B______45°. ∴∠A+B+C>45°+ _______+__________,這與________________________相矛盾. 所以___________不能成立,所以∠A,∠B中至少有一個角不大于45°.

【答案】∠A,∠B都大于45° 45° 90° 三角形內角和為180° 假設

【解析】

假設命題的結論不成立或假設命題的結論的反面成立,然后推出矛盾,說明假設錯誤,結論成立.

證明:假設∠A,∠B都大于45°,則∠A>45°,∠B>45°

∴∠A+B+C>45°+ 45°+90°,這與三角形內角和為180°相矛盾,

所以假設不能成立,

所以∠A,∠B中至少有一個角不大于45°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有
①∠A+∠B=90°
②AB2=AC2+BC2

④CD2=ADBD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,CDAB,垂足為D,如果CD=12,AD=16,BD=9,那么△ABC是直角三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,△ABC為等邊三角形,DBC上任一點,∠ADE=60°,邊DE與∠ACB外角的平分線相交于點E.

(1)求證:AD=DE.

(2)若點DCB的延長線上,如圖2,(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠A=90°, DAB邊上一點,且DB=DC,過BC上一點P(不包括B,C二點)作PEAB,垂足為點E, PFCD,垂足為點F,已知ADDB=14,BC= ,求PE+PF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】利用完全平方公式因式分解在數學中的應用,請回答下列問題:

1)因式分解:________

2)填空:

①當時,代數式________;

②當________時,代數式;

③代數式的最小值是________

3)拓展與應用:求代數式的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:

某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數量是第一次的2倍,但進價漲了4/件,結果共用去17.6萬元.

(1)該商場第一批購進襯衫多少件?

(2)商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數根,下列判斷正確的是( 。

A. 1一定不是關于x的方程x2+bx+a=0的根

B. 0一定不是關于x的方程x2+bx+a=0的根

C. 1和﹣1都是關于x的方程x2+bx+a=0的根

D. 1和﹣1不都是關于x的方程x2+bx+a=0的根

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數學等式,例如圖1可以得到(a+b)2=a2+2ab+b2,請解答下列問題:

(1)寫出圖2中所表示的數學等式   。

(2)根據整式乘法的運算法則,通過計算驗證上述等式。

(3)利用(1)中得到的結論,解決下面的問題:

a+b+c=10,ab+ac+bc=35,a2+b2+c2= .

(4)小明同學用圖3x張邊長為a的正方形,y張邊長為b的正方形z張邊長分別為a、b的長方形紙片拼出一個面積為(5a+7b)(9a+4b)長方形,x+y+z=   。

查看答案和解析>>

同步練習冊答案