【題目】探究:如圖①,在ABCD中,E為BC的中點,AE與BD相交于點M.求證:.
應(yīng)用:如圖②,在四邊形ABCD中,AB∥CD,AB=2CD,點E、F分別為AB、BC的中點,EF與BD相交于點M,連結(jié)AC.若ME=3,則AC的長為 .
【答案】證明見解析 AC=9
【解析】
(1)根據(jù)四邊形ABCD是平行四邊形,從而得到線段間的位置關(guān)系,利用三角形相似即可解答.
(2)根據(jù)點E、F分別為AB、BC的中點,求出四邊形BCDE為平行四邊形,再利用中位線即可解答.
探究:證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠EBM=∠ADM,∠BEM=∠DAM,
∴△EBM∽△ADM,
∴=.
∵點E為BC的中點,
∴EB=BC=AD,
∴=,
∴=.
應(yīng)用:解:∵AB∥CD,AB=2CD,點E為AB的中點,
∴BE=AB=CD,
∴四邊形BCDE為平行四邊形.
又∵點F為BC的中點,
∴=.
∵ME=3,
∴EF=ME+MF=3+=.
∵點E、F分別為AB、BC的中點,
∴EF為△BAC的中位線,
∴AC=2EF=9.
故答案為:9.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,E,F.
(1)如圖①,當(dāng)點D落在BC邊上時,求點D的坐標(biāo);
(2)如圖②,當(dāng)點D落在線段BE上時,AD與BC交于點H.
①求證△ADB≌△AOB;
②求點H的坐標(biāo).
(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點D.
(1)如圖①,當(dāng)直線l與⊙O相切于點C時,若∠DAC=30°,求∠BAC的大;
(2)如圖②,當(dāng)直線l與⊙O相交于點E、F時,若∠DAE=18°,求∠BAF的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假期,六盤水市教育局組織部分教師分別到A.B.C.D四個地方進(jìn)行新課程培訓(xùn),教育局按定額購買了前往四地的車票.如圖1是未制作完成的車票種類和數(shù)量的條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)若去C地的車票占全部車票的30%,則去C地的車票數(shù)量是 張,補(bǔ)全統(tǒng)計圖.
(2)若教育局采用隨機(jī)抽取的方式分發(fā)車票,每人一張(所有車票的形狀、大小、質(zhì)地完全相同且充分洗勻),那么余老師抽到去B地的概率是多少?
(3)若有一張去A地的車票,張老師和李老師都想要,決定采取旋轉(zhuǎn)轉(zhuǎn)盤的方式來確定.其中甲轉(zhuǎn)盤被分成四等份且標(biāo)有數(shù)字1、2、3、4,乙轉(zhuǎn)盤分成三等份且標(biāo)有數(shù)字7、8、9,如圖2所示.具體規(guī)定是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)指針指向的兩個數(shù)字之和是偶數(shù)時,票給李老師,否則票給張老師(指針指在線上重轉(zhuǎn)).試用“列表法”或“樹狀圖”的方法分析這個規(guī)定對雙方是否公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通信公司策劃了兩種上網(wǎng)的月收費方式:
收費方式 | 月使用費/元 | 包時上網(wǎng)時間/ | 超時費/(元/) |
30 | 25 | 0.05 | |
設(shè)每月上網(wǎng)時間為,方式的收費金額分別為(元),(元),如圖是與之間函數(shù)關(guān)系的圖象.(友情提示:若累計上網(wǎng)時間不超出包時上網(wǎng)時間,則只收月使用費;若累計上網(wǎng)時間超出包時上網(wǎng)時間,則對超出部分再加收超時費)
(1) , , ;
(2)求
(3)若每月上網(wǎng)時間為31小時,請直接寫出選擇哪種方式能節(jié)省上網(wǎng)費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長線于F,BG⊥AE于G,BG=,則△EFC的面積是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象與x軸交于點A(-1, 0),與y軸交于點C(0,-5),且經(jīng)過點D(3,-8).
(1)求此二次函數(shù)的解析式和頂點坐標(biāo);
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在原點處,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種品牌的手機(jī),每部進(jìn)貨價為2500元.市場調(diào)研表明:當(dāng)銷售價為2900元時,平均每天能售出8部;而當(dāng)銷售價每降低50元時,平均每天就能多售出4部.
(1)當(dāng)售價為2800元時,這種手機(jī)平均每天的銷售利潤達(dá)到多少元?
(2)若設(shè)每部手機(jī)降低x元,每天的銷售利潤為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(3)商場要想獲得最大利潤,每部手機(jī)的售價應(yīng)訂為為多少元?此時的最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com