【題目】如圖,的直徑,上一點(diǎn),過(guò)點(diǎn)的切線,交的延長(zhǎng)線于點(diǎn),取的中點(diǎn),的延長(zhǎng)線與的延長(zhǎng)線交于點(diǎn)

求證:的切線;

,,求的長(zhǎng).

【答案】證明見(jiàn)解析;

【解析】

(1)先由圓周角定理得出∠BAC=90°,再由斜邊上的中線性質(zhì)得出AE=CD=CE=DE,由CD是切線得出CD⊥OC,即可得出OA⊥AP,周長(zhǎng)結(jié)論;
(2)先證明AOC是等邊三角形,得出∠ACO=60°,再在RtBACRtACD中,運(yùn)用銳角三角函數(shù)即可得出結(jié)果.

證明:連結(jié);如圖所示:

的直徑,

的中點(diǎn),

,

,

的切線,

,

,

,

上一點(diǎn),

的切線;解:由

中,,,

,

;

,

,

是等邊三角形,

中,,,

,

中,,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.

(1)試判斷△ABC的形狀;

(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點(diǎn)C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC的邊AB,AC的外側(cè)分別作等邊ABD和等邊△ACE,連接DC,BE

1)求證:DCBE;

2)若BD3,BC4, BD⊥BC于點(diǎn)B,請(qǐng)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來(lái)三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的等角分割線

例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條等角分割線

(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD△ABC等角分割線;

(2)如圖2,△ABC中,∠C=90°,∠B=30°;

畫出△ABC等角分割線,寫出畫法并說(shuō)明理由;

BC=3,求出中畫出的等角分割線的長(zhǎng)度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字-2、l、2,它們除了數(shù)字不同外,其它都完全相同.

(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字l的小球的概率為 .

(2)小紅先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,請(qǐng)用樹(shù)狀圖或表格列出、的所有可能的值,并求出直線不經(jīng)過(guò)第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市綠化部門決定利用現(xiàn)有的不同種類花卉搭配園藝造型,擺放于城區(qū)主要大道的兩側(cè)A、B兩種園藝造型均需用到杜鵑花,A種造型每個(gè)需用杜鵑花25盆,B種造型每個(gè)需用杜鵑花35盆,解答下列問(wèn)題:

(1)已知人民大道兩側(cè)搭配的A、B兩種園藝造型共60個(gè),恰好用了1700盆杜鵑花,A、B兩種園藝造型各搭配了多少個(gè)?

(2)如果搭配一個(gè)A種造型的成本W與造型個(gè)數(shù)的關(guān)系式為:W=100―x (0<x<50),搭配一個(gè)B種造型的成本為80現(xiàn)在觀海大道兩側(cè)也需搭配A、B兩種園藝造型共50個(gè),要求每種園藝造型不得少于20個(gè),并且成本總額y(元)控制在4500元以內(nèi). 以上要求能否同時(shí)滿足?請(qǐng)你通過(guò)計(jì)算說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)坐標(biāo)為

求該拋物線的解析式;

拋物線的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);

點(diǎn)是線段上的動(dòng)點(diǎn),過(guò)點(diǎn),交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

若平行于軸的動(dòng)直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.問(wèn):是否存在這樣的直線,使得是等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等邊三角形,點(diǎn)EF分別為射線AC、射線CB上兩點(diǎn),CE=BF,直線EB、AF交于點(diǎn)D.

1)當(dāng)EF在邊AC、BC上時(shí)如圖,求證:△ABF≌△BCE.

2)當(dāng)EAC延長(zhǎng)線上時(shí),如圖,AC=10,SABC=25,EGBCG,EHABHHE=8,EG= .

3E、F分別在ACCB延長(zhǎng)線上時(shí),如圖,BE上有一點(diǎn)P,CP=BD,CPB是銳角,求證:BP=AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案