【題目】如圖,是的直徑,是上一點(diǎn),過(guò)點(diǎn)作的切線,交的延長(zhǎng)線于點(diǎn),取的中點(diǎn),的延長(zhǎng)線與的延長(zhǎng)線交于點(diǎn).
求證:是的切線;
若,,求的長(zhǎng).
【答案】證明見(jiàn)解析;.
【解析】
(1)先由圓周角定理得出∠BAC=90°,再由斜邊上的中線性質(zhì)得出AE=CD=CE=DE,由CD是切線得出CD⊥OC,即可得出OA⊥AP,周長(zhǎng)結(jié)論;
(2)先證明△AOC是等邊三角形,得出∠ACO=60°,再在Rt△BAC和Rt△ACD中,運(yùn)用銳角三角函數(shù)即可得出結(jié)果.
證明:連結(jié),;如圖所示:
∵是的直徑,
∴,
∴,
∵是的中點(diǎn),
∴,
∴,
∵,
∴,
∵是的切線,
∴,
∴,
∴,
∴,
∵是上一點(diǎn),
∴是的切線;解:由知.
在中,∵,,
即,
∴;
∴,
∴,
∵,
∴是等邊三角形,
∴,
在中,∵,,,
∴,
又∵在中,,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC的邊AB,AC的外側(cè)分別作等邊△ABD和等邊△ACE,連接DC,BE.
(1)求證:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于點(diǎn)B,請(qǐng)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來(lái)三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的“等角分割線”.
例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條“等角分割線”.
(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD為△ABC的“等角分割線”;
(2)如圖2,△ABC中,∠C=90°,∠B=30°;
①畫出△ABC的“等角分割線”,寫出畫法并說(shuō)明理由;
②若BC=3,求出①中畫出的“等角分割線”的長(zhǎng)度.
(3)在△ABC中,∠A=24°,若△ABC存在“等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字-2、l、2,它們除了數(shù)字不同外,其它都完全相同.
(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字l的小球的概率為 .
(2)小紅先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,請(qǐng)用樹(shù)狀圖或表格列出、的所有可能的值,并求出直線不經(jīng)過(guò)第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市綠化部門決定利用現(xiàn)有的不同種類花卉搭配園藝造型,擺放于城區(qū)主要大道的兩側(cè).A、B兩種園藝造型均需用到杜鵑花,A種造型每個(gè)需用杜鵑花25盆,B種造型每個(gè)需用杜鵑花35盆,解答下列問(wèn)題:
(1)已知人民大道兩側(cè)搭配的A、B兩種園藝造型共60個(gè),恰好用了1700盆杜鵑花,A、B兩種園藝造型各搭配了多少個(gè)?
(2)如果搭配一個(gè)A種造型的成本W與造型個(gè)數(shù)的關(guān)系式為:W=100―x (0<x<50),搭配一個(gè)B種造型的成本為80元.現(xiàn)在觀海大道兩側(cè)也需搭配A、B兩種園藝造型共50個(gè),要求每種園藝造型不得少于20個(gè),并且成本總額y(元)控制在4500元以內(nèi). 以上要求能否同時(shí)滿足?請(qǐng)你通過(guò)計(jì)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),與軸交于點(diǎn)、,點(diǎn)坐標(biāo)為.
求該拋物線的解析式;
拋物線的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);
點(diǎn)是線段上的動(dòng)點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
若平行于軸的動(dòng)直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.問(wèn):是否存在這樣的直線,使得是等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)E、F分別為射線AC、射線CB上兩點(diǎn),CE=BF,直線EB、AF交于點(diǎn)D.
(1)當(dāng)E、F在邊AC、BC上時(shí)如圖,求證:△ABF≌△BCE.
(2)當(dāng)E在AC延長(zhǎng)線上時(shí),如圖,AC=10,S△ABC=25,EG⊥BC于G,EH⊥AB于H,HE=8,EG= .
(3)E、F分別在AC、CB延長(zhǎng)線上時(shí),如圖,BE上有一點(diǎn)P,CP=BD,∠CPB是銳角,求證:BP=AD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com