【題目】圖1、圖2分別是8×8的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,線段AB的端點在小正方形的頂點上,請在圖1、圖2中各畫一個圖形,分別滿足以下要求:
(1)在圖1中畫一個以線段AB為一邊的正方形,并求出此正方形的面積;(所畫正方形各頂點必須在小正方形的頂點上)
(2)在圖2中畫一個以線段AB為一邊的等腰三角形,所畫等腰三角形各頂點必須在小正方形的頂點上,且所畫等腰三角形的面積為12.
圖1 圖2 備用圖
科目:初中數(shù)學 來源: 題型:
【題目】某商店從廠家選購甲、乙兩種商品,乙商品每件進價比甲商品每件進價少20元,若購進甲商品5件和乙商品4件共需要1000元;
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)若甲種商品的售價為每件145元,乙種商品的售價為每件120元,該商店準備購進甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤不少于870元,則甲種商品至少可購進多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,F是弦AD的中點,連結(jié)OF并延長OF交⊙O于點E,連結(jié)BE交AD于點G,延長AD至點C,使得GC=BC,連結(jié)BC.
(1)求證:BC是⊙O的切線.
(2)⊙O的半徑為10,sinA=,求EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點A順時針旋轉(zhuǎn)到①,可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=2+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=3+;…按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點P2020為止,則AP2020等于_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.五張完全相同的卡片上,分別畫有圓、平行四邊形、等邊三角形、角、線段,現(xiàn)從中隨機抽取一張,恰好抽到軸對稱圖形的概率是
B.事件“任意畫一個多邊形,其外角和是”是必然事件
C.一個盒子中有白球個,紅球個,黑球個(每個除了顏色外都相同).如果從中任取一個球,取得的是紅球的概率與不是紅球的概率相同,那么與的差是
D.事件“把個球放入三個抽屜中,其中一個抽屜中至少有個球”是隨機事件
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形中,,點分別是線段上的動點(不與端點重合),且,與相交于點.給出如下幾個結(jié)論:
①
②平分;
③若,則
④
其中正確的結(jié)論是_____________(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A在x軸正半軸上,點B在y軸正半軸上,O為坐標原點,OA=OB=1,過點O作OM1⊥AB于點M1;過點M1作M1A1⊥OA于點A1:過點A1作A1M2⊥AB于點M2;過點M2作M2A2⊥OA于點A2…以此類推,點M2019的坐標為_____.
查看答案和解析>>