【題目】如圖,在正方形OABC中,點(diǎn)B的坐標(biāo)是(4,4),點(diǎn)E、F分別在邊BC、BA上,OE=2,若∠EOF=45°,則F點(diǎn)的縱坐標(biāo)是( )
A. B. 1 C. D. -1
【答案】A
【解析】分析:如圖連接EF,延長BA使得AM=CE,則△OCE≌△OAM.再證明△OFE≌△FOM,根據(jù)全等三角形的性質(zhì)和圖形即可得EF=FM=AF+AM=AF+CE,根據(jù)勾股定理求得OE的長,設(shè)AF=x,則EF=2+x,EB=2,F(xiàn)B=4-x,在Rt△BEF中,根據(jù)勾股定理可得方程(2+x)2=22+(4-x)2,解方程求得x值,即可得點(diǎn)F的縱坐標(biāo).
詳解:如圖連接EF,延長BA使得AM=CE,則△OCE≌△OAM.
∴OE=OM,∠COE=∠MOA,
∵∠EOF=45°,
∴∠COE+∠AOF=45°,
∴∠MOA+∠AOF=45°,
∴∠EOF=∠MOF,
在△OFE和△OFM中,
,
∴△OFE≌△FOM,
∴EF=FM=AF+AM=AF+CE,設(shè)AF=x,
∵CE=,
∴EF=2+x,EB=2,F(xiàn)B=4-x,
∴(2+x)2=22+(4-x)2,
∴x=,
∴點(diǎn)F的縱坐標(biāo)為,
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC ;
(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小浩從二次函數(shù)y=ax2+bx+c(a≠0)的圖象中得到如下信息:
①ab<0
②4a+b=0
③當(dāng)y=5時(shí)只能得x=0
④關(guān)于x的一元二次方程ax2+bx+c=10有兩個(gè)不相等的實(shí)數(shù)根,
你認(rèn)為其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建設(shè)銀行的某儲(chǔ)蓄員小張?jiān)谵k理業(yè)務(wù)時(shí),約定存入為正,取出為負(fù).年月日他辦理了件業(yè)務(wù):元、元、元、元、元、元.
若他早上領(lǐng)取備用金元,那么下班時(shí)應(yīng)交回銀行多少元?
若每辦一件業(yè)務(wù),銀行發(fā)給業(yè)務(wù)量的作為獎(jiǎng)勵(lì),那么這天小張應(yīng)得獎(jiǎng)金多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一工程,在工程招標(biāo)時(shí),接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書.施工一天,需付甲工程隊(duì)工程款1.2萬元,乙工程隊(duì)工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊(duì)的投標(biāo)書測算,有如下方案:
(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;
(2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用6天;
(3)若甲、乙兩隊(duì)合作3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.
試問:(1)規(guī)定日期是多少天?
(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的周長為24cm,對角線AC、BD相交于O點(diǎn),E是AD的中點(diǎn),連接OE,則線段OE的長等于( )
A.3cm
B.4cm
C.2.5cm
D.2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正方體的六個(gè)面上分別標(biāo)有﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中的一個(gè)數(shù),各個(gè)面上所標(biāo)數(shù)字都不相同,如圖是這個(gè)正方體的三種放置方法,三個(gè)正方體下底面所標(biāo)數(shù)字分別是a,b,c,則a+b+c+abc= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,3),C(5,0).
(1)當(dāng)α=60°時(shí),△CBD的形狀是 _________。
(2)當(dāng)0°<α<90°旋轉(zhuǎn)過程中,連結(jié)OH,當(dāng)△OHC為等腰三角形時(shí),請直接寫出點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如上圖,正方形網(wǎng)格中的每個(gè)小正方形邊長都是1,任意連接這些小正方形的頂點(diǎn),可得到一些線段;請?jiān)趫D中畫出AB=,CD=,EF=這樣的線段;
(2)如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°后的圖形△ABC;并計(jì)算對應(yīng)點(diǎn)B和B之間的距離?
(3)如圖是由5個(gè)邊長為1的小正方形拼成的.
①將該圖形分成三塊(在圖中畫出),使由這三塊可拼成一個(gè)正方形;
②求出所拼成的正方形的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com