精英家教網 > 初中數學 > 題目詳情

【題目】問題發(fā)現:

1)如圖1,在RtABC中,∠BAC=30°,∠ABC90°,將線段AC繞點A逆時針旋轉,旋轉角α=2∠BAC, BCD的度數是  ;線段BD,AC之間的數量關系是  

類比探究:

2)在RtABC中,∠BAC=45°,∠ABC90°,將線段AC繞點A逆時針旋轉,旋轉角α=2∠BAC,請問(1)中的結論還成立嗎?;

拓展延伸:

3)如圖3,在RtABC中,AB2,AC4,∠BDC90°,若點P滿足PBPC,∠BPC90°,請直接寫出線段AP的長度.

【答案】1120°,BD=AC;(2)不成立,理由詳見解析;(3

【解析】

1)過點DDEBC,通過線段之間的轉換得到ACDE之間的關系,在直角三角形BDE中通過BDDE的關系,得到BD,AC之間的關系.

2)類比(1)的解法,找線段之間的關系.

(3)分情況進行討論,畫出符合題意得圖形進行求解.

解:(1)如圖3,過點DDEBC,垂足為E,設BC=m

RtABC中,∠BAC=30°,由BC=AB·tan30°BC=AC·sin30°,得AC=2mBC=m,

AC=AD∠CAD=2×30°=60°,∴△ACD為等邊三角形,∴∠ACD=60°,CD=AC=2m,

∴∠BCD=60°×2=120°,在RtDEC中,∠DCE=180°-120°=60°,DC=2m∴CE=CD·cos60°=m,DE=CE·tan60°=m,∴在RtBED中,BD==,

==,故BD=AC.故答案為:120°;BD=AC

2)不成立,理由如下:

BC=n,在RtABC中,∠BAC=45°,∠ABC=90°,∴BC=AB=m,AC=BC=n,

AC=AD,∠CAD=90°,∴△CAD為等腰直角三角形,∴∠ACD=45°CD=AC= 2n,

∴∠BCD=2×45°=90°,在RtBCD中,BD==,

==,,故BD=AC.答案為:90°;BD=AC.故結論不成立.

3AP的長為.;解答如下:

PB=PCP在線段BC的垂直平分線上,∵∠BAC=∠BCP=90°,故A、B、C、P四點共圓,以線段BC的中點為圓心構造⊙O,如圖4,圖5,分類討論如下:

當點P在直線BC上方時,如圖4,作PMAC,垂足為M,設PM=x

PB=PC,∠BPC=90°∴△PBC為等腰直角三角形,∴∠PBC=45°

∠PAC=∠PBC=45°,∴△AMP為等腰直角三角形,∴AM=PM=x,AP=PM=x,

RtABC中,AB=2,AC=4∴BC==,∴PC=BC·sin45°=,

RtPMC中,∵∠PMC=90°,PM=xPC=,CM=4-x,

解得:,(舍),∴AP==;

②當點P在直線BC的下方時,如圖5,作PNAB的延長線,垂足為N,設PN=y

同上可得PB=,△PAN為等腰三角形,∴AN=PN=y∴BN=y-2,

Rt△PNB中,∵∠PNB=90°PN=y,BN=y-2,PB=,,

解得:,(舍),∴AP==.故AP的長度為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(滿分7分)五月石榴紅,枝頭鳥兒歌.一只小鳥從石榴樹上的A沿直線飛到對面房屋的C.A看房屋頂部C處的仰角為,看房屋底部D處的俯角為,石榴樹與該房屋之間的水平距離為米,求出小鳥飛行的距離AC和房屋的高度CD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】深圳天虹某商場從廠家批發(fā)電視機進行零售,批發(fā)價格與零售價格如下表:

電視機型號

批發(fā)價(/)

1500

2500

零售價(/)

2025

3640

若商場購進甲、乙兩種型號的電視機共50臺,用去9萬元.

(1)求商場購進甲、乙型號的電視機各多少臺?

(2)元旦商場決定進行優(yōu)惠促銷:以零售價的七五折銷售乙種型號電視機,兩種電視機銷售完畢,商場共獲利8.5%,求甲種型號電視機打幾折銷售?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】復課返校后,為了拉大學生鍛煉的間距,學校決定增購適合獨立訓練的兩種體育器材:跳繩和毽子.如果購進5根跳繩和6個毽子共需196元;購進2根跳繩和5個鍵子共需120元.

1)求一根跳繩和一個毽子的售價分別是多少元;

2)學校計劃購買跳繩和鍵子兩種器材共400個,由于受疫情影響,商場決定對這兩種器材打折銷售,其中跳繩以八折出售,毽子以七五折出售,學校要求跳繩的數量不少于毽子數量的3倍,跳繩的數量不多于310根,請你求出學;ㄥX最少的購買方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為⊙的內接三角形,為⊙的直徑,在線段上取點(不與端點重合),作,分別交、圓周于,連接,已知

1)求證:為⊙的切線;

2)已知,填空:

①當__________時,四邊形是菱形;

②若,當__________時,為等腰直角三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2020年初新冠肺炎疫情爆發(fā)以來,國內經濟--度被按下暫停鍵,如今隨著國內疫情防控形勢持續(xù)向好,各地開始進人積極復工復產的新模式.某商家為降低疫情帶來的影響,刺激消費,吸引顧客,特此設計了一個游戲,其規(guī)則是:分別轉動如圖所示的兩個可以自由轉動的轉盤各一次,每次指針落在每一字母區(qū)域的機會均等(若指針恰好落在分界線上則重轉),當兩個轉盤的指針所指字母相同時,消費者就可以獲得一次八折優(yōu)惠價購買商品的機會.

1)用樹狀圖或列表的方法表示出游戲可能出現的所有結果;

2)若小亮參加一次游戲,則他能獲得八折優(yōu)惠價購買商品的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某體育用品商店購進了足球和排球共20個,一共花了1360元,進價和售價如表:

足球

排球

進價(元/個)

80

50

售價(元/個)

95

60

l)購進足球和排球各多少個?

2)全部銷售完后商店共獲利潤多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售AB兩種型號的電風扇,進價及售價如表:

品牌

A

B

進價(元/臺)

120

180

售價(元/臺)

150

240

1)該商場4月份用21000元購進AB兩種型號的電風扇,全部售完后獲利6000元,求商場4月份購進A、B兩種型號電風扇的數量;

2)該商場5月份計劃用不超過42000元購進A、B兩種型號電風扇共300臺,且B種型號的電風扇不少于50臺;銷售時準備A種型號的電風扇價格不變,B種型號的電風扇打9折銷售.那么商場如何進貨才能使利潤最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,ABa,∠ABC60°,過點AAEBC,垂足為EAFCD,垂足為F

1)連接EF,用等式表示線段EFEC的數量關系,并說明理由;

2)連接BF,過點AAKBF,垂足為K,求BK的長(用含a的代數式表示);

3)延長線段CBG,延長線段DCH,且BGCH,連接AGGH、AH

判斷△AGH的形狀,并說明理由;

a2,SADH3+),求sinGAB的值.

查看答案和解析>>

同步練習冊答案