【題目】如圖,⊙O為△ABC的外接圓,BC為⊙O的直徑,BA平分∠CBF,過點A作AD⊥BF,垂足為D.

(1)求證:AD為⊙O的切線;
(2)若BD=1,tan∠BAD= ,求⊙O的直徑.

【答案】
(1)證明:連接OA,

∵BC為⊙O的直徑,BA平分∠CBF,AD⊥BF,

∴∠ADB=∠BAC=90°,∠DBA=∠CBA;

∵∠OAC=∠OCA,

∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,

∴DA為⊙O的切線


(2)解:∵BD=1,tan∠BAD=

∴AD=2,

∴AB= = ,

∴cos∠DBA=

∵∠DBA=∠CBA,

∴BC= = =5.

∴⊙O的直徑為5.


【解析】(1)連接OA,由題意可得∠ADB=∠BAC=90°,再由BA平分∠CBF,可得∠DBA=∠CBA,再由∠OAC=∠OCA,繼而可得∠DAO=90°,可證明結(jié)論;
(2)由BD=1,tan∠BAD的值可求得AD的值,再由勾股定理可求出AB的值,可求出cos∠DBA的值,在Rt△ABC中由cos∠DBA=可求出BC的長,可得圓的直徑.
【考點精析】本題主要考查了圓周角定理和切線的判定定理的相關知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.

(1)畫出△ABC關于直線MN對稱的△A1B1C1;

(2)直接寫出AA1的長度;

(3)如圖2,A、C是直線MN同側(cè)固定的點,D是直線MN上的一個動點,在直線MN上畫出點D,使AD+DC最。ūA糇鲌D痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對非負實數(shù)x“四舍五入到個位的值記為<x>,即當n為非負整數(shù)時,若,則<x>n,如<0.46>=0,<3.67>=4。給出下列關于<x>的結(jié)論:

①<1.493>=1;

②<2x>=2<x>;

,則實數(shù)x的取值范圍是;

x≥0,m為非負整數(shù)時,有;

。

其中,正確的結(jié)論有  (填寫所有正確的序號)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“永定樓”是門頭溝區(qū)的地標性建筑,某中學九年級數(shù)學興趣小組進行了測量它高度的社會實踐活動.如圖,他們在A點測得頂端D的仰角∠DAC=30°,向前走了46米到達B點后,在B點測得頂端D的仰角∠DBC=45°.求永定樓的高度CD.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC⊥BC,AD⊥BD,E為AB的中點,

(1)如圖1,求證:ECD是等腰三角形;

(2)如圖2,CD與AB交點為F,若AD=BD,EF=3,DE=4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20181017日是我國第五個扶貧日”,某校學生會干部對學生倡導的扶貧自愿捐款活動進行抽樣調(diào)查,得到一組學生捐款情況的數(shù)據(jù),對學校部分捐款人數(shù)進行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計圖,(圖中信息不完整),已知A.B兩組捐款人數(shù)的比為1:5.

被調(diào)查的捐款人數(shù)分組統(tǒng)計表:

組別

捐款額x/

人數(shù)

A

1≤x<10

a

B

10≤x<20

100

C

20≤x<30

______

D

30≤x<40

______

E

40≤x

______

請結(jié)合以上信息解答下列問題:

(1)a的值和參與調(diào)查的總?cè)藬?shù);

(2)補全被調(diào)查的捐款人數(shù)分組統(tǒng)計圖1”并計算扇形B的圓心角度數(shù);

(3)已知該校有學生2200人,請估計捐款數(shù)不少于30元的學生人數(shù)有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題

113×(﹣5

2)(﹣21÷(﹣7

3)﹣3+(﹣5)﹣(﹣7

4)(﹣36÷9

511﹣(+2

6÷1×3

7)(﹣0.5+|06|﹣(﹣7)﹣(﹣4.75

899×(﹣9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,D、E分別是AB、BC的中點,FCA延長線上,∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為( 。

A. 16 B. 20 C. 18 D. 22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)在規(guī)劃改造期間,欲拆除小區(qū)廣場邊的一根電線桿AB,已知距電線桿AB水平距離14米處是觀景臺,即BD=14米,該觀景臺的坡面CD的坡角∠CDF的正切值為2,觀景臺的高CF為2米,在坡頂C處測得電線桿頂端A的仰角為30°,D、E之間是寬2米的人行道,如果以點B為圓心,以AB長為半徑的圓形區(qū)域為危險區(qū)域.請你通過計算說明在拆除電線桿AB時,人行道是否在危險區(qū)域內(nèi)?( ≈1.73)

查看答案和解析>>

同步練習冊答案