【題目】如圖,某小區(qū)在規(guī)劃改造期間,欲拆除小區(qū)廣場(chǎng)邊的一根電線桿AB,已知距電線桿AB水平距離14米處是觀景臺(tái),即BD=14米,該觀景臺(tái)的坡面CD的坡角∠CDF的正切值為2,觀景臺(tái)的高CF為2米,在坡頂C處測(cè)得電線桿頂端A的仰角為30°,D、E之間是寬2米的人行道,如果以點(diǎn)B為圓心,以AB長(zhǎng)為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域.請(qǐng)你通過(guò)計(jì)算說(shuō)明在拆除電線桿AB時(shí),人行道是否在危險(xiǎn)區(qū)域內(nèi)?( ≈1.73)
【答案】解:由tan∠CDF= =2,CF=2米,
∴DF=1米,BG=2米;
∵BD=14米,
∴BF=GC=15米;
在Rt△AGC中,由tan30°= ,
∴AG=15× =5 ≈5×1.732=8.660米;
∴AB=8.660+2=10.66米;
而BE=BD﹣ED=12米,
∴BE>AB;
因此不需要封人行道.
【解析】在Rt△CDF中利用三角函數(shù)可求出DF的長(zhǎng),進(jìn)而求出BF的長(zhǎng);在Rt△AGC中,利用三角函數(shù)可求出AG的長(zhǎng),進(jìn)而可得AB的長(zhǎng),再由BE=BD﹣ED求出BE的長(zhǎng),比較可得結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用關(guān)于仰角俯角問(wèn)題,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,BC為⊙O的直徑,BA平分∠CBF,過(guò)點(diǎn)A作AD⊥BF,垂足為D.
(1)求證:AD為⊙O的切線;
(2)若BD=1,tan∠BAD= ,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 與x軸交于點(diǎn)A(-2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度向C點(diǎn)運(yùn)動(dòng).其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線上存在點(diǎn)K,使 ,求K點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是AB上一點(diǎn),連接CD,且∠ACD=∠ABC.
(1)求證:△ACD∽△ABC;
(2)若AD=6,AB=10,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)探究:哪些特殊的角可以用一副三角板畫出?
在①,②,③,④中,小明同學(xué)利用一副三角板畫不出來(lái)的特殊角是_________;(填序號(hào))
(2)在探究過(guò)程中,愛動(dòng)腦筋的小明想起了圖形的運(yùn)動(dòng)方式有多種.如圖,他先用三角板畫出了直線,然后將一副三角板拼接在一起,其中角()的頂點(diǎn)與角()的頂點(diǎn)互相重合,且邊、都在直線上.固定三角板不動(dòng),將三角板繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度,當(dāng)邊與射線第一次重合時(shí)停止.
①當(dāng)平分時(shí),求旋轉(zhuǎn)角度;
②是否存在?若存在,求旋轉(zhuǎn)角度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無(wú)情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);
(3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4,∠BAD=120°,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AC上的一動(dòng)點(diǎn),則EF+BF的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.三角形內(nèi)角平分線定理:三角形的內(nèi)角平分線分對(duì)邊所得的兩條線段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中, AD是角平分線.
求證: .
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線于E.
∴ . ①
AD是角平分線,
∴ .
.
. ②
又 ,
. ③
.
(1)上述證明過(guò)程中,步驟①②③處的理由是什么?(寫出兩條即可)
(2)用三角形內(nèi)角平分線定理解答:已知,△ABC中,AD是角平分線,AB=7cm,AC=4cm,BC=6cm,求BD的長(zhǎng);
(3)我們知道如果兩個(gè)三角形的高相等,那么它們面積的比就等于底的比.請(qǐng)你通過(guò)研究△ABD和△ACD面積的比來(lái)證明三角形內(nèi)角平分線定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=(m+1)x2-|m|+n+4.
(1)當(dāng)m,n為何值時(shí),此函數(shù)是一次函數(shù)?
(2)當(dāng)m,n為何值時(shí),此函數(shù)是正比例函數(shù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com