【題目】計算題

113×(﹣5

2)(﹣21÷(﹣7

3)﹣3+(﹣5)﹣(﹣7

4)(﹣36÷9

511﹣(+2

6÷1×3

7)(﹣0.5+|06|﹣(﹣7)﹣(﹣4.75

899×(﹣9

【答案】1-65;(23;(3-1;(4)﹣4;(5;(6;(718;(8

【解析】

1)先確定符號,再把絕對值相乘;

2)先確定符號,再把兩數(shù)的絕對值相除;

3)先把減法化為加法,再按加法法則進行計算;

4)先把帶分?jǐn)?shù)化為假分?jǐn)?shù),再把除法化為乘法,然后約分即可;

5)先去括號,再根據(jù)加法結(jié)合律進行計算;

6)先把除法轉(zhuǎn)化為乘法,然后進行乘法運算;

7)先把減法轉(zhuǎn)化為加法,再根據(jù)加法法則進行計算;

8)利用乘法分配律進行計算.

113×(﹣5=-13×5=-65;

2)(﹣21÷(﹣7=21÷7=3

3)﹣3+(﹣5)﹣(﹣7=-3-5+7=-1;

4)(﹣36÷9==;

511﹣(+2=11-2=112-=9-=

6÷1×3=×;

7)(﹣0.5+|06|﹣(﹣7)﹣(﹣4.75=-0.5+6+7+4.75=-0.5+7+6+4.75=7+11=18;

899×(﹣9=(100-) ×(﹣9=100×(﹣9=-900+=-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx的一次函數(shù),且當(dāng)x0時,y=﹣4;且圖象通過點(1,﹣2

1)求這個一次函數(shù)的解析式;

2)判斷點(a,2a4)是否在該函數(shù)圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)課上,老師要求學(xué)生根據(jù)圖示張鑫與李亮的對話內(nèi)容,展開如下活動:

活動1:仔細(xì)閱讀對話內(nèi)容

活動2:根據(jù)對話內(nèi)容,提出一些數(shù)學(xué)問題,并解答.

下面是學(xué)生提出的兩個問題,請你列方程解答.

(1)如果張鑫沒有辦卡,她需要付多少錢?

(2)你認(rèn)為買多少元錢的書辦卡就便宜?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O為△ABC的外接圓,BC為⊙O的直徑,BA平分∠CBF,過點A作AD⊥BF,垂足為D.

(1)求證:AD為⊙O的切線;
(2)若BD=1,tan∠BAD= ,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛在實踐課上要做一個如圖1所示的折扇,折扇扇面的寬度AB是骨柄長OA的 ,折扇張開的角度為120°.小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長為24 cm,寬為21cm.小剛經(jīng)過畫圖、計算,在矩形布料上裁剪下了最大的扇面,若不計裁剪和粘貼時的損耗,此時扇面的寬度AB為( )

A.21cm
B.20 cm
C.19cm
D.18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級舉行英語演講比賽,購買A,B兩種筆記本作為獎品,這兩種筆記本的單價分別是12元和8元.根據(jù)比賽設(shè)獎情況,需購買筆記本共30本,并且所購買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量,設(shè)買A筆記本n本,買兩種筆記本的總費為w元.

(1)寫出w(元)關(guān)于n(本)的函數(shù)關(guān)系式,并求出自變量n的取值范圍;

(2)購買這兩種筆記本各多少時,費用最少?最少的費用是多少元?

(3)商店為了促銷,決定僅對A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價不變.問購買這兩種筆記本各多少本時花費最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,直線l為經(jīng)過點A的任一直線,BD⊥l于D,CE⊥AE,若BD>CE,試問:

(1)AD與CE的大小關(guān)系如何?請說明理由;

(2)線段BD,DE,CE之間的數(shù)量之間關(guān)系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線 與x軸交于點A(-2,0)、B(4,0)兩點,與y軸交于點C.

(1)求拋物線的表達(dá)式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度向C點運動.其中一個點到達(dá)終點時,另一個點也停止運動.當(dāng)△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時,在BC下方的拋物線上存在點K,使 ,求K點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,BAD=120°,點E是AB的中點,點F是AC上的一動點,則EF+BF的最小值是   

查看答案和解析>>

同步練習(xí)冊答案