【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長線上一點(diǎn),且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為 ,sinA= ,求BH的長.

【答案】
(1)證明:如圖1中,

∵∠ODB=∠AEC,∠AEC=∠ABC,

∴∠ODB=∠ABC,

∵OF⊥BC,

∴∠BFD=90°,

∴∠ODB+∠DBF=90°,

∴∠ABC+∠DBF=90°,

即∠OBD=90°,

∴BD⊥OB,

∴BD是⊙O的切線;


(2)證明:連接AC,如圖2所示:

∵OF⊥BC,

= ,

∴∠CAE=∠ECB,

∵∠CEA=∠HEC,

∴△CEH∽△AEC,

= ,

∴CE2=EHEA;


(3)解:連接BE,如圖3所示:

∵AB是⊙O的直徑,

∴∠AEB=90°,

∵⊙O的半徑為 ,sin∠BAE=

∴AB=5,BE=ABsin∠BAE=5× =3,

∴EA= =4,

= ,

∴BE=CE=3,

∵CE2=EHEA,

∴EH= ,

∴在Rt△BEH中,BH= = =


【解析】(1)如圖1中,欲證明BD是切線,只要證明AB⊥BD即可;(2)連接AC,如圖2所示,欲證明CE2=EHEA,只要證明△CEH∽△AEC即可;(3)連接BE,如圖3所示,由CE2=EHEA,可得EH= ,在Rt△BEH中,根據(jù)BH= ,計(jì)算即可;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.

(1)當(dāng)AC的長度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)SAMC=SBOC時(shí),求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的布袋里裝有4個(gè)球,其中2個(gè)紅球,2個(gè)白球,它們除顏色外其余都相同.
(1)摸出1個(gè)球是白球的概率是;
(2)同時(shí)摸兩個(gè)球恰好是兩個(gè)紅球的概率(要求畫樹狀圖或列表).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某工廠計(jì)劃在規(guī)定時(shí)間內(nèi)生產(chǎn)24000個(gè)零件,若每天比原計(jì)劃多生產(chǎn)30個(gè)零件,則在規(guī)定時(shí)間內(nèi)可以多生產(chǎn)300個(gè)零件.

1)求原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù)和規(guī)定的天數(shù).

2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計(jì)劃正常生產(chǎn)的同時(shí),引進(jìn)5組機(jī)器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線每天生產(chǎn)零件的個(gè)數(shù)比20個(gè)工人原計(jì)劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個(gè)零件的生產(chǎn)任務(wù),求原計(jì)劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)DE.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、A、E三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應(yīng)用:如圖3,D、EDA、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖兩直線AB,CD相交于點(diǎn)OOE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度數(shù)

(2)OFOE,COF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具零售店準(zhǔn)備從批發(fā)市場選購A、B兩種文具,批發(fā)價(jià)A種為12元/件,B種為8元/件.若該店零售A、B兩種文具的日銷售量y(件)與零售價(jià)x(元/件)均成一次函數(shù)關(guān)系.(如圖)
(1)求y與x的函數(shù)關(guān)系式;
(2)該店計(jì)劃這次選購A、B兩種文具的數(shù)量共100件,所花資金不超過1000元,并希望全部售完獲利不低于296元,若按A種文具每件可獲利4元和B種文具每件可獲利2元計(jì)算,則該店這次有哪幾種進(jìn)貨方案?
(3)若A種文具的零售價(jià)比B種文具的零售價(jià)高2元/件,求兩種文具每天的銷售利潤W(元)與A種文具零售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并說明A、B兩種文具零售價(jià)分別為多少時(shí),每天銷售的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,

(1)描出A(﹣4,3)、B(﹣1,0)、C(﹣2,3)三點(diǎn).

(2)△ABC 的面積是多少?

(3)作出△ABC 關(guān)于 y 軸的對稱圖形.

(4)請?jiān)?/span>x 軸上求作一點(diǎn)P,使△PA1C1 的周長最小,并直接寫出點(diǎn)P 的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是邊長為2的等邊三角形,點(diǎn)A在y軸上,點(diǎn)O,B1 , B2 , B3…都在直線l上,則點(diǎn)B2017的坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊答案