【題目】如圖,直角三角形中,,,,,過點(diǎn)作于點(diǎn).
(1)找出圖中相等的銳角,并說明理由.
(2)求出點(diǎn)到直線的距離以及點(diǎn)到直線的距離.
解:(1)(已知),
,
,
,
.
同理可證,
.
(2)點(diǎn)到直線的距離 .
到直線的距離為線段 的長度.
(填線段名稱).
,,,代入上式,解得
.
【答案】(1) ∠2;∠2;同角的余角相等;∠B; (2)5;CD;AC;BC;AB;CD;.
【解析】
(1)由于在△ABC中,∠ACB=90°,CD⊥AB,故得出有關(guān)相等的角;
(2)根據(jù)直角三角形的面積計(jì)算CD的長.
(1)CD⊥AB(已知),
∴∠CDA=90
∴∠A+∠1=90,
∵∠1+∠2=90,
∴∠A=∠2 同角的余角相等).
同理可證,
∴∠1=∠B.
故答案為:∠2;∠2;同角的余角相等;∠B;
(2)點(diǎn)A到直線BC的距離=5cm.
C到直線AB的距離為線段CD的長度.
S△ABC=AC×BC=AB×CD.
∵AC=12,BC=5,AB=13,代入上式,解得
CD=cm.
故答案為:5; CD;AC;BC;AB;CD;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點(diǎn),M為AB中點(diǎn)、N為DE中點(diǎn),連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結(jié)論;
(2)若CD=5,AC=12,求△PMN的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1 =∠2,∠BAC = 70°。將求∠AGD的過程填寫完整。因?yàn)?/span>EF∥AD,所以 ∠2 = 。又因?yàn)?/span> ∠1 = ∠2,所以 ∠1 = ∠3。 所以AB∥ 。所以∠BAC + = 180°。又因?yàn)椤?/span>BAC = 70°,所以∠AGD = 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮調(diào)查本班同學(xué)的身高后,將數(shù)據(jù)繪制成如圖所示的頻數(shù)分布直方圖(每小組數(shù)據(jù)包含最小值,但不包含最大值.比如,第二小組數(shù)據(jù)x滿足:145≤x<150,其他小組的數(shù)據(jù)類似).設(shè)班上學(xué)生身高的平均數(shù)為,則的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在直線l上(F,C之間不能直接測量),點(diǎn)A,D在l異側(cè),測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-4x-m2=0
(1)求證:該方程有兩個(gè)不等的實(shí)根;
(2)若該方程的兩實(shí)根x1、x2滿足x1+2x2=9,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過點(diǎn)D作⊙O的切線BC于點(diǎn)M,切點(diǎn)為N,則DM的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖象中所反應(yīng)的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家,其中x表示時(shí)間,y表示張強(qiáng)離家的距離,根據(jù)圖象提供的信息,以下四個(gè)說法錯(cuò)誤的是( )
A. 體育場離張強(qiáng)家2.5千米 B. 張強(qiáng)在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強(qiáng)從早餐店回家的平均速度是千米/小時(shí)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com