【題目】如圖,若四邊形ABCD、四邊形GFED都是正方形,AD=4, ,當正方形GFED繞D旋轉(zhuǎn)到如圖的位置,點F在邊AD上,延長CE交AG于H,交AD于M.則CM的長為

【答案】
【解析】解:過點E作EQ⊥CD于Q,則∠EQD=90°,
∵正方形DEFG中∠EDF=45°,正方形ABCD中∠ADC=90°,
∴∠EDQ=90°﹣45°=45°,
∴△DEQ是等腰直角三角形,
∵DE=
∴EQ=DQ=1,
又∵AD=4=CD,
∴CQ=4﹣1=3,
∵EQ∥MD,
= ,即 = ,
∴DM= ,
∴直角三角形CDM中,CM= =
所以答案是:

【考點精析】利用正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°AC=BC,AD平分∠CABBC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四個三角形中,與圖中的三角形相似的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正六邊形的邊心距為 ,這個正六邊形的面積為( )
A.2
B.4
C.6
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從一個建筑物的A處測得對面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測點與樓的水平距離AD為31m,樓BC的高度大約為多少?(結(jié)果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形ABC中,一腰AC上的中線BD將三角形的周長分成9cm15cm兩部分,求這個三角形的腰長和底邊的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知C是∠AOB的平分線上一點,點P,P′分別在邊OA,OB上,如果要得到OP=OP′,需要添加以下條件中的某一個,那么所有可能結(jié)果的序號為________

①∠OCP=OCP′;②∠OPC=OP′C;PC=P′C;PP′OC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標為A(m,2).

(1)求m的值和一次函數(shù)的解析式;

(2)設一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;

(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案