【題目】如圖所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為ts.
(1)則BC= cm;
(2)當t為何值時,點P在邊AC的垂直平分線上?此時CQ= ;
(3)當點Q在邊CA上運動時,直接寫出使△BCQ成為等腰三角形的運動時間.
【答案】(1)BC=12cm;(2)t=,CQ=13cm;(3)當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.
【解析】
(1)由勾股定理即可得出結論;
(2)可得PC=PA=t,PB=16﹣t,則122+(16﹣t)2=t2,解出t=.可求出CQ;
(3)用t分別表示出BQ和CQ,利用等腰三角形的性質可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關于t的方程,可求得t的值.
解:(1)∵∠B=90°,AB=16cm,AC=20cm,
∴BC===12(cm).
故答案為:12;
(2)如圖,
∵點P在邊AC的垂直平分線上,
∴PC=PA=t,PB=16﹣t,
在Rt△BPC中,BC2+BP2=CP2,即122+(16﹣t)2=t2,
解得:t=.
此時,點Q在邊AC上,CQ=(cm);
故答案為:13cm.
(3)①當CQ=BQ時,如圖1所示,
則∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°.
∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=10,
∴BC+CQ=22,
∴2t=22,
∴t=22÷2=11秒.
②當CQ=BC時,如圖2所示,
則BC+CQ=24,
∴2t=24,
∴t=24÷2=12秒.
③當BC=BQ時,如圖3所示,
過B點作BE⊥AC于點E,
∴,
∴=.
∴CQ=2CE=14.4,
∴BC+CQ=26.4,
∴2t=26.4,
∴t=26.4÷2=13.2秒.
綜上所述:當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.
科目:初中數學 來源: 題型:
【題目】下面是“作一個30°角”的尺規(guī)作圖過程.
已知:平面內一點A.
求作:∠A,使得∠A30°.
作法:如圖,
(1)作射線AB;
(2)在射線AB上取一點O,以O為圓心,OA為半徑作圓,與射線AB相交于點C;
(3)以C為圓心,OC為半徑作弧,與⊙O交于點D,作射線AD.
∠DAB即為所求的角.
請回答:該尺規(guī)作圖的依據是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P(t,0)是x軸上的動點,Q(0,2t)是y軸上的動點.若線段PQ與函數y=﹣|x|2+2|x|+3的圖象只有一個公共點,則t的取值是_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:“我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內注意通風,勤洗手,多運動,少熬夜.”某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷,社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進行統(tǒng)計、分析,過程如下:
收集數據
甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理數據
成績x(分) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲小區(qū) | 2 | 5 | a | b |
乙小區(qū) | 3 | 7 | 5 | 5 |
分析數據
統(tǒng)計量 | 平均數 | 中位數 | 眾數 |
甲小區(qū) | 85.75 | 87.5 | c |
乙小區(qū) | 83.5 | d | 80 |
應用數據
(1)填空:a= ,b= ,c= ,d= ;
(2)若甲小區(qū)共有800人參與答卷,請估計甲小區(qū)成績大于90分的人數;
(3)社區(qū)管理員看完統(tǒng)計數據,認為甲小區(qū)對新型冠狀病毒肺炎防護知識掌握更好,請你寫出社區(qū)管理員的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD交于點E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=.求CD的長和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中正確的是( 。
A.在直角三角形中,兩條邊的平方和等于第三邊的平方
B.如果一個三角形兩邊的平方差等于第三邊的平方,那么這個三角形是直角三角形
C.在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,若a2+b2=c2,則∠A=90°
D.在△ABC中,若a=3,b=4,則c=5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2-5x+c的圖象如圖所示.
(1)試求該二次函數的解析式和它的圖象的頂點坐標;
(2)觀察圖象回答,x何值時y的值大于0?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,二次函數y=-2x2+4x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.
(1)求m的值及點B的坐標;
(2)求△ABC的面積;
(3)該二次函數圖象上有一點D(x,y),使S△ABD=S△ABC,請求出D點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)某商場用2500元購進了A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價,標價如下表所示:
(1)這兩種臺燈各購進多少盞?
(2)若A型臺燈按標價的九折出售,B型臺燈按標價的八折出售,那么這批臺燈全部售完后,商場共獲利多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com