【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點,其中點的坐標(biāo)為,點的坐標(biāo)為.
(1)根據(jù)圖象,直接寫出滿足的的取值范圍;
(2)求這兩個函數(shù)的表達式;
(3)點在線段上,且,求點的坐標(biāo).
【答案】(1)或;(2),;(3)
【解析】
(1) 觀察圖象得到當(dāng)或時,直線y=k1x+b都在反比例函數(shù)的圖象上方,由此即可得;
(2)先把A(-1,4)代入y=可求得k2,再把B(4,n)代入y=可得n=-1,即B點坐標(biāo)為(4,-1),然后把點A、B的坐標(biāo)分別代入y=k1x+b得到關(guān)于k1、b的方程組,解方程組即可求得答案;
(3)設(shè)與軸交于點,先求出點C坐標(biāo),繼而求出,根據(jù)分別求出,,再根據(jù)確定出點在第一象限,求出,繼而求出P點的橫坐標(biāo),由點P在直線上繼而可求出點P的縱坐標(biāo),即可求得答案.
(1)觀察圖象可知當(dāng)或,k1x+b>;
(2)把代入,得,
∴,
∵點在上,∴,
∴,
把,代入得
,解得,
∴;
(3)設(shè)與軸交于點,
∵點在直線上,∴,
,
又,
∴,,
又,∴點在第一象限,
∴,
又,∴,解得,
把代入,得,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項,現(xiàn)隨機抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
請結(jié)合以上信息解答下列問題:
(1)m= ;
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學(xué)生,請你估計該校約有 名學(xué)生最喜愛足球活動.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)著說點理:補全證明過程:
如圖,AB∥EF,CD⊥EF于點D,若∠B=40°,求∠BCD的度數(shù).
解:過點C作CG∥AB.
∵AB∥EF,
∴CG∥EF.( )
∴∠GCD=∠ .(兩直線平行,內(nèi)錯角相等)
∵CD⊥EF,
∴∠CDE=90°.( )
∴∠GCD= .(等量代換)
∵CG∥AB,
∴∠B=∠BCG.( )
∵∠B=40°,
∴∠BCG=40°.
則∠BCD=∠BCG+∠GCD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動 實驗、猜想與證明
問題情境
(1)數(shù)學(xué)活動課上,小穎向同學(xué)們提出了這樣一個問題:如圖(1),在矩形ABCD中,AB=2BC,M、N分別是AB,CD的中點,作射線MN,連接MD,MC,請直接寫出線段MD與MC之間的數(shù)量關(guān)系.
解決問題
(2)小彬受此問題啟發(fā),將矩形ABCD變?yōu)槠叫兴倪呅,其中?/span>A為銳角,如圖(2),AB=2BC,M,N分別是AB,CD的中點,過點C作CE⊥AD交射線AD于點E,交射線MN于點F,連接ME,MC,則ME=MC,請你證明小彬的結(jié)論;
(3)小麗在小彬結(jié)論的基礎(chǔ)上提出了一個新問題:∠BME與∠AEM有怎樣的數(shù)量關(guān)系?請你回答小麗提出的這個問題,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對稱軸與 y軸平行且經(jīng)過原點O的拋物線也經(jīng)過A(2,m),B(4,m),若△AOB的面積為4,則拋物線的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,如圖所示,并規(guī)定:顧客消費200元(含200元)以上,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)九折、八折、七折區(qū)域,顧客就可以獲得此項優(yōu)惠,如果指針恰好在分割線上時,則需重新轉(zhuǎn)動轉(zhuǎn)盤.
(1)某顧客正好消費220元,他轉(zhuǎn)一次轉(zhuǎn)盤,他獲得九折、八折、七折優(yōu)惠的概率分別是多少?
(2)某顧客消費中獲得了轉(zhuǎn)動一次轉(zhuǎn)盤的機會,實際付費168元,請問他消費所購物品的原價應(yīng)為多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓更多的失學(xué)兒童重返校園,某社區(qū)組織“獻愛心手拉手”捐款活動,對社區(qū)部分捐款戶數(shù)進行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計表和統(tǒng)計圖(圖中信息不完整).已知A、B兩組捐款戶數(shù)的比為1:5.
組別 | 捐款額(x)元 | 戶數(shù) |
A | 1≤x<50 | a |
B | 50≤x<100 | 10 |
C | 100≤x<150 | |
D | 150≤x<200 | |
E | x≥200 |
請結(jié)合以上信息解答下列問題.
(1)a= ,本次調(diào)查樣本的容量是 ;
(2)補全“捐款戶數(shù)分組統(tǒng)計表和捐款戶數(shù)統(tǒng)計圖1”;
(3)若該社區(qū)有1500戶住戶,請根據(jù)以上信息估計,全社區(qū)捐款不少于150元的戶數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完全平方公式:(a±b)2=a2±2ab+b2適當(dāng)?shù)淖冃危梢越鉀Q很多的數(shù)學(xué)問題.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因為a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根據(jù)上面的解題思路與方法,解決下列問題:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如圖,點C是線段AB上的一點,以AC、BC為邊向兩邊作正方形,設(shè)AB=5,兩正方形的面積和S1+S2=17,求圖中陰影部分面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com