【題目】如圖,直線AB與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,點(diǎn)A(1,3),點(diǎn)B(0,2).連接AO
(1)求直線AB的解析式;
(2)求三角形AOC的面積.
【答案】(1) y=x+2;(2)3.
【解析】
(1)設(shè)直線AB的解析式為y=kx+b,把A、B的坐標(biāo)代入求出k、b的值即可,
(2)把y=0代入(1)所求出的解析式,便能求出C點(diǎn)坐標(biāo),從而利用三角形的面積公式求出三角形AOC的面積即可.
(1)設(shè)直線AB的解析式y=kx+b,
把點(diǎn)A(1,3),B(0,2)代入解析式得:,
解得:k=1,b=2,
把k=1,b=2代入y=kx+b得:y=x+2,
直線AB的解析式:y=x+2;
(2)把 y=0代入y=x+2得:x+2=0,
解得:x=﹣2,
∴點(diǎn)C的坐標(biāo)為(﹣2,0),
∴OC=2,
∵△AOC的底為2,△AOC的高為點(diǎn)A的縱坐標(biāo)3,
∴S△ABC=2×3×=3,
故三角形AOC的面積為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,AB與CG交于點(diǎn)下列結(jié)論:;;;;其中正確的有______;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A,B重合),作CD⊥OB于點(diǎn)D,若點(diǎn)C,D都在雙曲線y= 上(k>0,x>0),則k的值為( 。
A.25
B.18
C.9
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=3EQ;④△PBF是等邊三角形,其中正確的是( 。
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張正方形紙片剪成四個(gè)小正方形,得到4個(gè)小正方形,稱為第一次操作;然后,將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到7個(gè)小正方形,稱為第二次操作;再將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到10個(gè)小正方形,稱為第三次操作;…,根據(jù)以上操作,若要得到2017個(gè)小正方形,則需要操作的次數(shù)是( 。
A. 672 B. 671 C. 670 D. 674
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】OC把∠AOB分成兩部分且有下列兩個(gè)等式成立:
①∠AOC=直角+∠BOC;②∠BOC=平角-∠AOC,問(wèn)∶
(1)OA與OB的位置關(guān)系怎樣?
(2)OC是否為∠AOB的平分線?并寫出判斷的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠B=∠C.
(1)若AD∥BC,則AD平分∠EAC嗎?請(qǐng)說(shuō)明理由.
(2)若∠B+∠C+∠BAC=180°,AD平分∠EAC,則AD∥BC嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com