【題目】二次函數的圖像如圖,下列結論:①;②;③;④.正確的個數為( )
A. 1個B. 2個C. 3個D. 4個
【答案】D
【解析】
由拋物線的開口方向,拋物線與y軸交點的位置、對稱軸即可確定a、b、c的符號,即可對①進行判斷;由拋物線與x軸有兩個交點判斷②即可;由拋物線的對稱軸為直線x=-1,可得a=,當x=1時,y=a+b+c<0,把a=代入即可對③進行判斷;把x=-1代入方程即可求得相應的y的符號,可對④進行判斷;綜上即可得答案.
∵拋物線開口向下,與y軸交于正半軸,
∴a<0,c>0,
∵對稱軸為直線x==-1,
∴b<0,
∴abc>0,故①正確,
∵拋物線與x軸有兩個交點,
∴b2-4ac>0,即4ac-b2<0,故②正確,
∵=-1,
∴a=,
∵x=1時,a+b+c<0,
∴+b+c<0,即3b+2c<0,故③正確,
當x=-1時,a-b+c>0,故④正確,
綜上所述:正確的結論有①②③④共4個,
故選D.
科目:初中數學 來源: 題型:
【題目】問題探究:
(1)已知:如圖①,△ABC中請你用尺規(guī)在BC邊上找一點D,使得點A到點BC的距離最短.
(2)托勒密(Ptolemy)定理指出,圓的內接四邊形兩對對邊乘積的和等于兩條對角線的乘積.如圖②,P是正△ABC外接圓的劣弧BC上任一點(不與B、C重合),請你根據托勒密(Ptolemy)定理證明:PA=PB+PC
問題解決:
(3)如圖③,某學校有一塊兩直角邊長分別為30m、60m的直角三角形的草坪,現準備在草坪內放置一對石凳及垃圾箱在點P處,使P到A、B、C三點的距離之和最小,那么是否存在符合條件的點P?若存在,請作出點P的位置,并求出這個最短距離(結果保留根號);若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設每件商品的售價上漲x元(x為整數),每周的銷售利潤為y元.
(1)求y與x的函數關系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】歷下區(qū)歷史文化悠久,歷下一名,取意于大舜帝耕作于歷山之下。這位遠古圣人為濟南留下了影響深遠的大舜文化,至今已綿延兩千年.某校就同學們對“舜文化”的了解程度進行隨機抽樣調查,將調查結果繪制成如下兩幅統(tǒng)計圖:
根據統(tǒng)計圖的信息,解答下列問題:
(1)本次共調查 名學生,條形統(tǒng)計圖中 ;
(2)若該校共有學生1200名,請估算該校約有多少名學生不了解“舜文化”;
(3)謂查結果中,該校九年級(2)班有四名同學相當優(yōu)秀,了解程度為“很了解”,他們是三名男生、—名女生,現準備從這四名同學中隨機抽取兩人去市里參加“舜文化”知識競賽,用樹狀或列表法,求恰好抽中一男生一女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,平分,交于點,點在上,經過兩點,交于點,交于點.
(1)求證:是的切線;
(2)若的半徑是,是弧的中點,求陰影部分的面積(結果保留和根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一聲汽笛長鳴,火車開進了蔡家崖.這是我省呂梁革命老區(qū)人民期盼已久的客運列車.蔡家崖列車的開通.帶動老區(qū)駛入了發(fā)展紅色旅游的快車進.某旅行社對去年“國慶”期間到呂梁觀光的游客的出行方式進行了隨機抽樣調查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據圖中信息,回答下列問題:
(1)求本次抽樣調查的總人數:
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中“其他”部分扇形的圓心角度數為____;
(4)去年“國慶”期問到呂梁觀光的旅游者為275萬人,則選擇自駕方式出行的有多少萬人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里裝有分別標有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com