【題目】如圖,點D,E在△ABC的邊BC上,連接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設,另一個作為命題的結論,構成三個命題:(1)①②③;(2)①③②;(3)②③①.
(1)以上三個命題是真命題的為(直接答題號) ;
(2)請選擇一個真命題進行證明(先寫出所選命題,然后證明).
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據真命題的定義即可得出結論,
(2)根據全等三角形的判定方法及全等三角形的性質即可證明.
(1)①②③,①③②,②③①;
(2)選擇①③②,證明如下:
∵AB=AC,
∴∠B=∠C,
在△ABD和△ACE中,
∵,
∴△ABD≌△ACE(SAS),
∴AD=AE.
選擇①②③,證明如下:
∵AB=AC,
∴∠B=∠C,
同理∠ADE=∠AED,
∴180°-∠ADE=180°-∠AED,
即∠ADB=∠AEC,
在△ABD和△ACE中,
∵,
∴△ABD≌△ACE,
∴BD=CE.
選擇②③①,
∵AD=AE,
∴∠ADE=∠AED,
∴180°-∠ADE=180°-∠AED,
即∠ADB=∠AEC,
在△ABD和△ACE中,
∵,
∴△ABD≌△ACE,
∴AB=AC.
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=﹣x2+bx+3的圖象與x軸交于A、C兩點(點A在點C的左側),與y軸交于點B,且OA=OB.
(1)求線段AC的長度;
(2)若點P在拋物線上,點P位于第二象限,過P作PQ⊥AB,垂足為Q.已知PQ=,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,點P是AB上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P的個數有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 已知拋物線經過A(-2,0)、B(4,0)、C(0,4)三點.
(1)求此拋物線的解析式;
(2)此拋物線有最大值還是最小值?請求出其最大或最小值;
(3)若點D(2,m)在此拋物線上,在y軸的正半軸上是否存在點P,使得△BDP是等腰三角形?若存在,請求出所有符合條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需156元;購買3個A品牌和1個B品牌的計算器共需122元。
(1)求這兩種品牌計算器的單價;
(2)學校開學前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器5個以上超出部分按原價的七折銷售。設購買個x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關于x的函數關系式;
(3)小明準備聯系一部分同學集體購買同一品牌的計算器,若購買計算器的數量超過5個,購買哪種品牌的計算器更合算?請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(k≠0)的圖象經過圓心P,則k=________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=640,∠ABC和∠ACD的平分線交于點A1,得∠A1;∠A1BC和∠A1CD的平分線交于點A2,得∠A2;∠A2BC和∠A2CD的平分線交于點A3,則∠A5= ______ .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com