【題目】已知,H為射線OA上一定點(diǎn),,P為射線OB上一點(diǎn),M為線段OH上一動(dòng)點(diǎn),連接PM,滿足為鈍角,以點(diǎn)P為中心,將線段PM順時(shí)針旋轉(zhuǎn),得到線段PN,連接ON.
(1)依題意補(bǔ)全圖1;
(2)求證:;
(3)點(diǎn)M關(guān)于點(diǎn)H的對(duì)稱點(diǎn)為Q,連接QP.寫出一個(gè)OP的值,使得對(duì)于任意的點(diǎn)M總有ON=QP,并證明.
【答案】(1)如圖所示見解析;(2)見解析;(3)OP=2.證明見解析.
【解析】
(1)根據(jù)題意畫出圖形即可.
(2)由旋轉(zhuǎn)可得∠MPN=150°,故∠OPN=150°-∠OPM;由∠AOB=30°和三角形內(nèi)角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM,得證.
(3)根據(jù)題意畫出圖形,以ON=QP為已知條件反推OP的長(zhǎng)度.由(2)的結(jié)論∠OMP=∠OPN聯(lián)想到其補(bǔ)角相等,又因?yàn)樾D(zhuǎn)有PM=PN,已具備一邊一角相等,過點(diǎn)N作NC⊥OB于點(diǎn)C,過點(diǎn)P作PD⊥OA于點(diǎn)D,即可構(gòu)造出△PDM≌△NCP,進(jìn)而得PD=NC,DM=CP.此時(shí)加上ON=QP,則易證得△OCN≌△QDP,所以OC=QD.再設(shè)DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于點(diǎn)M、Q關(guān)于點(diǎn)H對(duì)稱,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出△OCN≌△QDP即可
解:(1)如圖1所示為所求.
(2)設(shè)∠OPM=α,
∵線段PM繞點(diǎn)P順時(shí)針旋轉(zhuǎn)150°得到線段PN
∴∠MPN=150°,PM=PN
∴∠OPN=∠MPN-∠OPM=150°-α
∵∠AOB=30°
∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α
∴∠OMP=∠OPN
(3)OP=2時(shí),總有ON=QP,證明如下:
過點(diǎn)N作NC⊥OB于點(diǎn)C,過點(diǎn)P作PD⊥OA于點(diǎn)D,如圖2
∴∠NCP=∠PDM=∠PDQ=90°
∵∠AOB=30°,OP=2
∴DH=OH-OD=1
∵∠OMP=∠OPN
∴180°-∠OMP=180°-∠OPN
即∠PMD=∠NPC
在△PDM與△NCP中
∴△PDM≌△NCP(AAS)
∴PD=NC,DM=CP
設(shè)DM=CP=x,則OC=OP+PC=2+x,MH=MD+DH=x+1
∵點(diǎn)M關(guān)于點(diǎn)H的對(duì)稱點(diǎn)為Q
∴HQ=MH=x+1
∴DQ=DH+HQ=1+x+1=2+x
∴OC=DQ
在△OCN與△QDP中
∴△OCN≌△QDP(SAS)
∴ON=QP
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評(píng)全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對(duì)轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200公頃用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600公頃.
(1)求復(fù)耕土地和改造土地面積各為多少公頃;
(2)該地區(qū)對(duì)需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場(chǎng),要求休閑小廣場(chǎng)總面積不超過花卉園總面積的,求休閑小廣場(chǎng)的總面積最多為多少公頃.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,并與軸交于點(diǎn),點(diǎn)是對(duì)稱軸與軸的交點(diǎn).
(1)求拋物線的解析式;
(2)如圖①所示, 是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第一象限,連結(jié)BP、AP,求的面積的最大值;
(3)如圖②所示,在對(duì)稱軸的右側(cè)作交拋物線于點(diǎn),求出點(diǎn)的坐標(biāo);并探究:在軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)如圖1,若點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸交直線于點(diǎn),作于點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),點(diǎn)為軸上一動(dòng)點(diǎn),連接,.當(dāng)最長(zhǎng)時(shí),求的最小值;
(2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,將沿直線平移得到,直線與軸交于點(diǎn),連接,將 沿邊翻折得 ,連接, ,當(dāng)是等腰三角形時(shí),求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞頂點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后得到△CBE.
(1)求∠DCE的度數(shù);
(2)當(dāng)AB=4,AD∶DC=1∶3時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在邊長(zhǎng)為l的正方形網(wǎng)格中如圖所示.
①以點(diǎn)C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點(diǎn)C的異側(cè),并表示出A1的坐標(biāo).
②作出△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后的圖形△A2B2C.
③在②的條件下求出點(diǎn)B經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一種折疊臺(tái)燈,將其放置在水平桌面上,圖2是其簡(jiǎn)化示意圖,測(cè)得其燈臂長(zhǎng)為燈翠長(zhǎng)為,底座厚度為根據(jù)使用習(xí)慣,燈臂的傾斜角固定為,
(1)當(dāng)轉(zhuǎn)動(dòng)到與桌面平行時(shí),求點(diǎn)到桌面的距離;
(2)在使用過程中發(fā)現(xiàn),當(dāng)轉(zhuǎn)到至時(shí),光線效果最好,求此時(shí)燈罩頂端到桌面的高度(參考數(shù)據(jù):,結(jié)果精確到個(gè)位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB.將矩形ABCD對(duì)折,得到折痕MN,沿著CM折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)為E,ME與BC的交點(diǎn)為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)為G.下列結(jié)論:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若連接PE,則△PEG∽△CMD.其中正確的個(gè)數(shù)為( 。
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離是____米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com