【題目】如圖,菱形,矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為mn , 將菱形的“接近度”定義為|m-n|,于是,|m-n|越小,菱形越接近于正方形.若菱形的一個(gè)內(nèi)角為70°,則該菱形的“接近度”等于;當(dāng)菱形的“接近度”等于時(shí),菱形是正方形.

【答案】40;0
【解析】①若菱形的一個(gè)內(nèi)角為70°,
∴該菱形的相鄰的另一內(nèi)角的度數(shù)110°,
∴“接近度”等于|110-70|=40;
②當(dāng)菱形的“接近度”等于0時(shí),菱形的相鄰的內(nèi)角相等,因而都是90度,則菱形是正方形.
所以答案是:40;0.
【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)和正方形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半;先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等;先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠BAC的平分線,添加下列條件后,不能證明△ABD≌△ACD的是( 。

A. B=C B. BDA=CDA C. BD=CD D. AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三種不同類型的紙板的長(zhǎng)寬如圖所示,其中A類和C類是正方形,B類是長(zhǎng)方形,現(xiàn)A類有1塊,B類有4塊,C類有5塊. 如果用這些紙板拼成一個(gè)正方形,發(fā)現(xiàn)多出其中1塊紙板,那么拼成的正方形的邊長(zhǎng)是( )

A. m+n B. 2m+2n C. 2m+n D. m+2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,點(diǎn)EBC的中點(diǎn),將△ABE沿直線AE折疊,點(diǎn)B落在B′點(diǎn)處,連接B′C

(1)求證:AE∥B′C;

(2)AB=4,BC=6,求線段B′C的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DABC內(nèi)一點(diǎn),CD平分ACB,BDCD,A=ABD,若AC=5,BC=3,則BD的長(zhǎng)為( 。

A. 1 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A,B,C,D,E,F(xiàn)是邊長(zhǎng)為1的正六邊形的頂點(diǎn),連接任意兩點(diǎn)均可得到一條線段.在連接兩點(diǎn)所得的所有線段中任取一條線段,取到長(zhǎng)度為 的線段的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有一塊長(zhǎng)方形活動(dòng)場(chǎng)地,長(zhǎng)為米,寬比長(zhǎng)少米,實(shí)施“陽(yáng)光體育”行動(dòng)以后,學(xué)校為了擴(kuò)大學(xué)生的活動(dòng)場(chǎng)地,讓學(xué)生能更好地進(jìn)行體育活動(dòng),將操場(chǎng)的長(zhǎng)和寬都增加米.

(1)求活動(dòng)場(chǎng)地原來(lái)的面積是多少平方米.(用含的代數(shù)式表示)

(2)若,求活動(dòng)場(chǎng)地面積增加后比原來(lái)多多少平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,…,如此作下去,則△B2014A2015B2015的頂點(diǎn)A2015的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點(diǎn)A(0,4)和B(1,﹣2).
(1)求此拋物線的解析式;
(2)求此拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)設(shè)拋物線的頂點(diǎn)為C,試求△CAO的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案