【題目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿A—B—C的方向以每秒2個(gè)單位的速度運(yùn)動(dòng).設(shè)P的運(yùn)動(dòng)時(shí)間為t(秒).

(1)請(qǐng)直接用含t的代數(shù)式表示當(dāng)點(diǎn)PAB上時(shí),BP= ;②當(dāng)點(diǎn)PBC上時(shí),BP= ;

(2)求△BPC為等腰三角形的t.

(備用圖)

【答案】110-2t2t-10;(2t=2.521.4.

【解析】

1)由勾股定理求出AB的長①當(dāng)點(diǎn)PAB上時(shí),BP= AB-AP,②當(dāng)點(diǎn)PBC上時(shí),BP=2tAB,即可得出結(jié)論

2)分三種情況討論①作BC的垂直平分線交AB于點(diǎn)P,BC于點(diǎn)E連接PC,則△BPC是等腰三角形②以B為圓心,BC為半徑作弧與AB交于點(diǎn)P連接PC則△BPC是等腰三角形;③以C為圓心BC為半徑作弧與AB交于點(diǎn)PCCDABD,連接PC,則△BPC是等腰三角形分別計(jì)算即可

1)①∵C=90°BC=6,AC=8,∴AB==10,BP=AB-AP=102t;

BP=2tAB=2t10;

2)分三種情況討論:①如圖1,BC的垂直平分線交AB于點(diǎn)PBC于點(diǎn)E連接PC,則△BPC是等腰三角形

∵∠C=90°,∴PEAC

BE=EC,∴AP=PB=AB=5,∴t=5÷2=2.5

如圖2,B為圓心,BC為半徑作弧與AB交于點(diǎn)P連接PC則△BPC是等腰三角形

PB=BC=6,∴AP=ABBP=106=4t=4÷2=2;

如圖3,C為圓心,BC為半徑作弧與AB交于點(diǎn)PCCDABD,連接PC,則△BPC是等腰三角形

ACBC=ABCD,∴CD==4.8,∴BD==3.6

∵∵PC=BC=6,∴PD=BD=3.6,∴AP=ABBP=107.2=2.8,t=2.8÷2=1.4

綜上所述t=2.521.4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市為全面推進(jìn)“十個(gè)全覆蓋”工作,綠化提質(zhì)改造工程如火如荼地進(jìn)行,某施工隊(duì)計(jì)劃購買甲、乙兩種樹苗共600棵對(duì)某標(biāo)段道路進(jìn)行綠化改造,已知甲種樹苗每棵100元,乙種樹苗每棵200元.
(1)若購買兩種樹苗的總金額為70000元,求需購買甲、乙兩種樹苗各多少棵?
(2)若購買甲種樹苗的金額不少于購買乙種樹苗的金額,至少應(yīng)購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校冬季會(huì)把課間操改為跑步,但是發(fā)現(xiàn)部分學(xué)生沒有穿運(yùn)動(dòng)鞋的習(xí)慣,為保證學(xué)生的安全,學(xué)校準(zhǔn)備購買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制出如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問題.

(I)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為_____;

(Ⅱ)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺部分補(bǔ)充完整;

(Ⅲ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)與中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0),B(0,﹣ ),C(2,0),其對(duì)稱軸與x軸交于點(diǎn)D

(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)若P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)
①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個(gè);
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形內(nèi),在對(duì)角線AC上找到一點(diǎn)P,使PD+PE的和最小,則這個(gè)和的最小值是(  。

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)初二綜合素質(zhì)測(cè)評(píng)中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評(píng)價(jià)得分由測(cè)試成績(滿分100分)和平時(shí)成績(滿分100分)兩部分組成,其中測(cè)試成績占80%,平時(shí)成績占20%,并且當(dāng)綜合評(píng)價(jià)得分大于或等于80分時(shí),該生綜合評(píng)價(jià)為A等.
(1)孔明同學(xué)的測(cè)試成績和平時(shí)成績兩項(xiàng)得分之和為185分,而綜合評(píng)價(jià)得分為91分,則孔明同學(xué)測(cè)試成績和平時(shí)成績各得多少分?
(2)某同學(xué)測(cè)試成績?yōu)?0分,他的綜合評(píng)價(jià)得分有可能達(dá)到A等嗎?為什么?
(3)如果一個(gè)同學(xué)綜合評(píng)價(jià)要達(dá)到A等,他的測(cè)試成績至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,連接AC,⊙P和⊙Q分別是△ABC和△ADC的內(nèi)切圓,則PQ的長是(

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD△ABC的角平分線,且BD=BC,EBD延長線上的一點(diǎn),BE=BA,過EEF⊥AB,F(xiàn)為垂足.下列結(jié)論:①△ABD≌△EBC; ②∠BCE+∠BCD=180°; ③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=D有下列五個(gè)條件①AE=DE BE=CE AB=DC ④∠ABC=DCBAC=BD能證明ABCDCB全等的條件有幾個(gè)?并選擇其中一個(gè)進(jìn)行證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案