【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.
【答案】
(1)解:∵AB是⊙O的直徑,PB與⊙O相切于點B,
∴∠ACB=∠ABP=90°,
∴∠A+∠ABC=∠ABC+∠CBP=90°,
∴∠BAC=∠CBP
(2)解:∵∠PCB=∠ABP=90°,
∠P=∠P,
∴△ABP∽△BCP,
∴ ,
∴PB2=PCPA
(3)解:∵PB2=PCPA,AC=6,CP=3,
∴PB2=9×3=27,
∴PB=3 ,
∴sin∠PAB= = = .
【解析】(1)根據(jù)已知條件得到∠ACB=∠ABP=90°,根據(jù)余角的性質即可得到結論;(2)根據(jù)相似三角形的判定和性質即可得到結論;(3)根據(jù)三角函數(shù)的定義即可得到結論.
【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑,以及對相似三角形的判定與性質的理解,了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9
(1)求證:△COD∽△CBE;
(2)求半圓O的半徑 的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,點D為BC延長線上的一點,點A為圓上一點,且AB=AD,AC=CD.
(1)求證:△ACD∽△BAD;
(2)求證:AD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3 ,求弦AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵兩次共花費940元兩次購進的A、B兩種花草價格均分別相同.
、B兩種花草每棵的價格分別是多少元?
若再次購買A、B兩種花草共12棵、B兩種花草價格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C、D、E、F六個球隊進行單循環(huán)比賽(每兩隊之間賽一場,比賽結果必須分出勝負),每天同時在三個場地各進行一場比賽,前四天的積分表如下(E、F的積分被遮擋):
(1)根據(jù)積分榜,勝一場積幾分,負一場積幾分?
(2)若E隊前四天積分比F隊多4分,問E、F兩隊前四天的戰(zhàn)績分別是幾勝幾負?
(3)已知第一天B與D對陣,第二天C與E對陣,第三天D與F對陣,第四天B與C對陣,試分析第五天A和誰對陣比賽.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A(﹣1,5),B(4,2),C(﹣1,0)三點.點A關于原點O的對稱點A′,點B關于軸的對稱點為B′,點C關于軸的對稱點為C′.
(1)A′的坐標為 ,B′的坐標為 ,C′的坐標為 .
(2)建立平面直角坐標系,描出以下三點A、B′、C′,并求△AB′C′的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)區(qū)在一項工程招標時,接到甲、乙兩個工程隊的投標書,工程領導小組根據(jù)甲、乙兩隊的投標書測算,可有三種施工方案:①甲隊單獨完成這項工程,剛好如 期完成;②乙隊單獨完成此項工程要比規(guī)定工期多用5天;③ ,剩下的工程由乙隊單獨做,也正好如期完工.小亮設規(guī)定的工期為x天,根據(jù)題意列出了方 程: ,則方案③中被墨水污染的部分應該是( )
A.甲先做了4天
B.甲乙合作了4天
C.甲先做了工程的
D.甲乙合作了工程的
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:直線AB∥CD,點M,N分別在直線AB,CD上,點E為平面內一點.
(1)如圖1,∠BME,∠E,∠END的數(shù)量關系為 (直接寫出答案);
(2)如圖2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度數(shù)(用用含m的式子表示)
(3)如圖3,點G為CD上一點,∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于點H,探究∠GEK,∠BMN,∠GEH之間的數(shù)量關系(用含n的式子表示)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com