【題目】如圖,圓柱形玻璃容器高20cm,底面圓的周長為48cm,在外側(cè)距下底1cm的點(diǎn)A處有一蜘蛛,與蜘蛛相對(duì)的圓柱形容器的上口外側(cè)距上口1cm的點(diǎn)B處有一只蒼蠅,則蜘蛛捕獲蒼蠅所走的最短路線長度為( ).
A. 30cmB. 25cmC. D. 以上答案均不正確
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為線段上一動(dòng)點(diǎn),分別過點(diǎn)作,,連接.已知,設(shè).
(1)用含的代數(shù)式表示的值;
(2)探究:當(dāng)點(diǎn)滿足什么條件時(shí),的值最小?最小值是多少?
(3)根據(jù)(2)中的結(jié)論,請(qǐng)構(gòu)造圖形求代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知城有肥料200噸,城有肥料300噸.現(xiàn)將這些肥料全部運(yùn)往,兩鄉(xiāng). 鄉(xiāng)需要的肥料比鄉(xiāng)少20噸.從城運(yùn)往,兩鄉(xiāng)的費(fèi)用分別為每噸20元和25元;從城運(yùn)往,兩鄉(xiāng)的費(fèi)用分別為每噸15元和24元.
(1)求,兩鄉(xiāng)各需肥料多少噸?
(2)設(shè)從城運(yùn)往鄉(xiāng)的肥料為噸,全部肥料運(yùn)往,兩鄉(xiāng)的總運(yùn)費(fèi)為元,求與之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;
(3)因近期持續(xù)暴雨天氣,為安全起見,從城到鄉(xiāng)需要繞道運(yùn)輸,實(shí)際運(yùn)費(fèi)每噸增加了元(),其它路線運(yùn)費(fèi)不變.此時(shí)全部肥料運(yùn)往,兩鄉(xiāng)所需最少費(fèi)用為10520元,則的值為__ (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點(diǎn),且BP=2CP.
(1)用尺規(guī)在圖①中作出CD邊上的中點(diǎn)E,連接AE、BE(保留作圖痕跡,不寫作法);
(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;
(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點(diǎn)F,連接AP,不添加輔助線,△PFB能否由都經(jīng)過P點(diǎn)的兩次變換與△PAE組成一個(gè)等腰三角形?如果能,說明理由,并寫出兩種方法(指出對(duì)稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn).
(1)當(dāng)0<x<3時(shí),求y的取值范圍;
(2)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點(diǎn),
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的三個(gè)景點(diǎn)A、B、C在同一線路上.甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙乘景區(qū)觀光車先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C,甲、乙兩人同時(shí)到達(dá)景點(diǎn)C.甲、乙兩人距景點(diǎn)A的路程y(米)與甲出發(fā)的時(shí)間x(分)之間的函數(shù)圖象如圖所示.
(1)乙步行的速度為_ __米/分.
(2)求乙乘景區(qū)觀光車時(shí)y與x之間的函數(shù)關(guān)系式.
(3)甲出發(fā)多長時(shí)間與乙第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心,在周圍數(shù)十千米范圍內(nèi)形氣旋風(fēng)暴,有極強(qiáng)的破壞力,此時(shí)某臺(tái)風(fēng)中心在海域 B 處,在沿海城市 A 的正南方向 240 千米,其中心風(fēng)力為12 級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心 25 千米,臺(tái)風(fēng)就會(huì)減弱一級(jí),如圖所示,該臺(tái)風(fēng)中心正以 20 千米/時(shí)的速度沿 BC 方向移動(dòng).已知 AD⊥BC 且AD= AB,且臺(tái)風(fēng)中心的風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過 4 級(jí),則稱受臺(tái)風(fēng)影響.試問:
(1)A 城市是否會(huì)受到臺(tái)風(fēng)影響?請(qǐng)說明理由.
(2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間有多長?
(3)該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級(jí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com