【題目】已知直線y=﹣x+8與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的函數(shù)解析式是( 。
A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3
【答案】C
【解析】分析:由題意,可求得點(diǎn)A與B的坐標(biāo),由勾股定理,可求得AB的值,又由折疊的性質(zhì),可求得AB′與OB′的長,BM=B′M,然后設(shè)MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,即可得方程,繼而求得M的坐標(biāo),然后利用待定系數(shù)法即可求得答案.
詳解:令y=0得x=6,令x=0得y=8,
∴點(diǎn)A的坐標(biāo)為:(6,0),點(diǎn)B坐標(biāo)為:(0,8),
∵∠AOB=90°,
∴AB==10,
由折疊的性質(zhì),得:AB=AB′=10,
∴OB′=AB′OA=106=4,
設(shè)MO=x,則MB=MB′=8x,
在Rt△OMB′中,OM2+OB′2=B′M2,
即x2+42=(8x)2,
解得:x=3,
∴M(0,3),
設(shè)直線AM的解析式為y=kx+b,代入A(6,0),M(0,3)得:
,
解得:,
∴直線AM的解析式為:y=x+3.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B在數(shù)軸上分別表示a,b.
(1)對照數(shù)軸填寫下表:
a | 6 | -6 | -6 | -6 | 2 | -1.5 |
b | 4 | 0 | 4 | -4 | -10 | -1.5 |
A、B兩點(diǎn)的距離 |
(2)若A、B兩點(diǎn)間的距離記為d,試問:d和a,b有何數(shù)量關(guān)系?
(3)在數(shù)軸上找出所有符合條件的整數(shù)點(diǎn)P,使它到5和-5的距離之和為10,并求所有這些整數(shù)的和;
(4)若點(diǎn)C表示的數(shù)為x,當(dāng)點(diǎn)C在什么位置時,取得的值最小? 最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】丫頭和爸爸從家出發(fā)到大劇院觀看“巴交有聲”巴蜀中學(xué)新年演奏會,爸爸先出發(fā),2分鐘后丫頭沿同一路線出發(fā)去追爸爸,當(dāng)丫頭追上爸爸時發(fā)現(xiàn)背包落在途中了,爸爸立即返回找背包,丫頭繼續(xù)前往大劇院,當(dāng)丫頭到達(dá)大劇院時,爸爸剛好找到背包并立即前往大劇院爸爸找背包的時間不計,丫頭在大劇院等了一會,沒有等到爸爸,就沿同一路線返回接爸爸,最終與爸爸會合,丫頭和爸爸的速度始終不變,如圖是丫頭和爸爸兩人之間的距離米與丫頭出發(fā)的時間分鐘的函數(shù)圖象,則丫頭在大劇院等了爸爸______分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) 的圖象如圖所示,有以下結(jié)論:① ;② ;③ ;④ ;⑤ 其中所有正確結(jié)論的序號是( )
A.①②
B.①③④
C.①②③⑤
D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是二元一次方程組的不同解法,請你把下列消元的過程填寫完整:
對于二元一次方程組
(1)方法一:由 ,得
把 代入 ,得________________.
(2)方法二:,得
,得________________.
(3)方法三: ,得
,得________________.
(4)方法四:由 ,得 ⑥
把 代入⑥,得________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為 ,寬為 的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出 ,, 之間的等量關(guān)系是 ;
(3)根據(jù)(2)中的結(jié)論,若 ,,則 ;
(4)實(shí)際上我們可以用圖形的面積表示許多恒等式,下面請你設(shè)計一個幾何圖形來表示恒等式.在圖形上把每一部分的面積標(biāo)寫清楚.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,李老師讓同學(xué)們獨(dú)立完成課本第23頁第七題選擇題(2)如圖 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=( )
A.180° B.270° C.360° D.540°
(1)請寫出這道題的正確選項;
(2)在同學(xué)們都正確解答這道題后,李老師對這道題進(jìn)行了改編:如圖2,AB∥EF,請直接寫出∠BAD,∠ADE,∠DEF之間的數(shù)量關(guān)系.
(3)善于思考的龍洋同學(xué)想:將圖1平移至與圖2重合(如圖3所示),當(dāng)AD,ED分別平分∠BAC,∠CEF時,∠ACE與∠ADE之間有怎樣的數(shù)量關(guān)系?請你直接寫出結(jié)果,不需要證明.
(4)彭敏同學(xué)又提出來了,如果像圖4這樣,AB∥EF,當(dāng)∠ACD=90°時,∠BAC、∠CDE和∠DEF之間又有怎樣的數(shù)量關(guān)系?請你直接寫出結(jié)果,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)C表示的數(shù)是6,點(diǎn)B與點(diǎn)C之間的距離是4,點(diǎn)B與點(diǎn)A的距離是12,點(diǎn)P為數(shù)軸上一動點(diǎn).
(1)數(shù)軸上點(diǎn)A表示的數(shù)為 .點(diǎn)B表示的數(shù)為 ;
(2)數(shù)軸上是否存在一點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離和為16,若存在,請求出此時點(diǎn)P所表示的數(shù);若不存在,請說明理由;
(3)點(diǎn)P以每秒1個單位長度的速度從C點(diǎn)向左運(yùn)動,點(diǎn)Q以每秒2個單位長度從點(diǎn)B出發(fā)向左運(yùn)動,點(diǎn)R從點(diǎn)A以每秒5個單位長度的速度向右運(yùn)動,它們同時出發(fā),運(yùn)動的時間為t秒,請求點(diǎn)P與點(diǎn)Q,點(diǎn)R的距離相等時t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com