【題目】如圖,在ABC中,AB=BC,ABC=30°,BD平分∠ABCAC于點D,BC的垂直平分線EFBC于點E,BD于點F,BF=6,AC的長為____.

【答案】6.

【解析】

連接FC,根據(jù)等腰三角形的性質(zhì)即可得:∠ABD=CBD=ABC=15°,BDAC,AD=CD,然后根據(jù)垂直平分線的性質(zhì)可得:FB=FC=6,根據(jù)等邊對等角可得:∠FCB=FBC=15°,再利用三角形的外角的性質(zhì)求出∠DFC=30°,根據(jù)30°所對的直角邊是斜邊的一半即可求出DC,從而求出AC.

解:連接FC

AB=BC,ABC=30°,BD平分∠ABC

∴∠ABD=CBD=ABC=15°BDAC,AD=CD

EF垂直平分BC

FB=FC=6

∴∠FCB=FBC=15°

∴∠DFC=FCB+∠FBC=30°

CD=FC=3

AC= ADCD=6

故答案為:6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

向下平移個單位長度得到的,點的坐標(biāo)是________

以點為位似中心,在網(wǎng)格內(nèi)畫出,使位似,且位似比為,點的坐標(biāo)是________;(畫出圖形)

的面積是________平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象交于點A(﹣2,1),B(1,n),交y軸于點C.

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)若點Py軸上的點,請直接寫出能使△PAC為等腰三角形的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖的方格紙中有若干個點,若A、B兩點關(guān)于過某點的直線對稱,這個點可能是( .

A.P1B.P2C.P3D.P4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AE平分∠BAC,DAE上一點,連接BD,CD.請你添加一個適當(dāng)?shù)臈l件,使ABD≌△ACD.添加的條件是:____.(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點坐標(biāo)為D(-1,1)且經(jīng)過點B,連接AB,直線AB與此拋物線的另一個交點為C,則SBCDSABO=( )

A. 8:1B. 6:1C. 5:1D. 4:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,ABC=120°,點EAC上一點,連接BE,且∠BEC=50°,D為點B關(guān)于直線AC的對稱點,連接CD,將線段EB繞點E順時針旋轉(zhuǎn)40°得到線段EF,連接DF.

1)請你在下圖中補全圖形;

2)請寫出∠EFD的大小,并說明理由;

3)連接CF,求證:DF=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為

A B3 C1 D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺的娛樂節(jié)目《周末大放送》有這樣的翻獎牌游戲:如圖所示,將一個正方形均分成9等份,數(shù)字的背面寫有祝福語或獎金數(shù).游戲規(guī)則是:每次翻動正面一個數(shù)字,看看反面對應(yīng)的內(nèi)容,就可知是得獎還是得到溫馨祝福.

正面:

1

2

3

4

5

6

7

8

9

反面:

祝你開心

萬事如意

獎金1 000元

身體健康

心想事成

獎金500元

獎金100元

生活愉快

謝謝參與

請你完成下列問題:

(1)翻到獎金1 000元的概率是多少?

(2)翻不到獎金的概率是多少?

(3)一選手準(zhǔn)備在奇數(shù)中選擇一個數(shù)字,他獲得獎金的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案