【題目】在△ABC中,∠ACB90°,ACBC,直線MN經(jīng)過點C,且ADMND, BEMNE

(1)當直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:△ADC≌△CEB;

(2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,試問DE、AD、BE的等量關系?并說明理由.

【答案】1)見解析;(2DE=AD-BE,理由見解析

【解析】

1)由已知推出∠ADC=BEC=90°,因為∠ACD+BCE=90°,∠DAC+ACD=90°,推出∠DAC=BCE,根據(jù)AAS即可得到答案;
2)與(1)證法類似可證出∠ACD=EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,即可得到答案.

解:(1)證明:如圖1,
ADDE,BEDE,
∴∠ADC=BEC=90°,
∵∠ACB=90°,
∴∠ACD+BCE=90°,∠DAC+ACD=90°,
∴∠DAC=BCE,
在△ADC和△CEB中,

∴△ADC≌△CEBAAS);
2)結論:DE=AD-BE
理由:如圖2,∵BEEC,ADCE
∴∠ADC=BEC=90°,
∴∠EBC+ECB=90°,
∵∠ACB=90°
∴∠ECB+ACE=90°,
∴∠ACD=EBC,
在△ADC和△CEB中,

,

∴△ADC≌△CEBAAS),
AD=CE,CD=BE,
DE=EC-CD=AD-BE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解學生的課外閱讀情況,隨機抽取了50名學生,并統(tǒng)計他們平均每天的課外閱讀時間/(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計圖表.

根據(jù)圖表中提供的信息,回答下列問題:

(1)a_____,b_____;

(2)將頻數(shù)分布直方圖補充完整;

(3)若該校共1 000名學生,估計有多少學生平均每天的課外閱讀時間不少于50min?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線y= 經(jīng)過點A(1,2),過點A作y軸的垂線,垂足為B,交雙曲線y=﹣ 于點C,直線y=m(m≠0)分別交雙曲線y=﹣ 、y= 于點P、Q.

(1)求k的值;
(2)若△OAP為直角三角形,求點P的坐標;
(3)△OCQ的面積記為SOCQ , △OAP的面積記為S△OAP,試比較SOCQ與SOAP的大小(直接寫出結論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點O,AC=6,BD=8.動點E從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止.點F是點E關于BD的對稱點,EF交BD于點P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】臍橙結碩果,香飄引客來,贛南臍橙以其外表光潔美觀,肉質(zhì)脆嫩,風味濃甜芳香的特點飲譽中外.現(xiàn)欲將一批臍橙運往外地銷售,若用2A型車和1B型車載滿臍橙一次可運走10噸;用1A型車和2B型車載滿臍橙一次可運走11.現(xiàn)有臍橙31噸,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿臍橙.

根據(jù)以上信息,解答下列問題:

11A型車和1B型車都載滿臍橙一次可分別運送多少噸?

2)請你幫該物流公司設計租車方案;

3)若1A型車需租金100/次,1B型車需租金120/.請選出費用最少的租車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD,∠B=∠D.點EF分別在AB、CD上.連接AC,分別交DE、BFG、H.求證:∠1+2180°

證明:∵ABCD,

∴∠B__________

又∵∠B=∠D,

__________.(等量代換)

_______________

∴∠l+2180°_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個三角形能用一條直線將其分割出兩個等腰三角形,那么我們稱這個三角形為“活三角形”,這條直線稱為該“活三角形”的“生命線”.

1)小明在研究“活三角形”問題時(如圖),他發(fā)現(xiàn),在△ABC中,若∠BAC = 3C時,這個△ABC一定是“活三角形”.點DBC邊上一點,聯(lián)結AD,他猜測:當∠DAC = C時,AD就是這個三角形的“生命線”,請你幫他說明AD是△ABC的“生命線”的理由.

2)如小明研究結果可以總結為:有一個內(nèi)角是另一個內(nèi)角的3倍時,該三角形是一個“活三角形”.

請通過自己操作研究,并根據(jù)上訴結論,總結“活三角形”的其他特征.

(注意從三角形邊、角特征及相互間關系總結)

,該三角形是一個“活三角形”.

,該三角形是一個“活三角形”.

3)如果一個等腰三角形是一個“活三角形”那么它的頂角大小為: 度.(直接寫出結果即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F為邊BC上兩點,且BECFAFDE

1)求證:△ABF≌△DCE;

2)四邊形ABCD是矩形嗎?為什么?

查看答案和解析>>

同步練習冊答案