【題目】已知二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn)(1,0),(-6,0)(0,-3).
(1)求該二次函數(shù)的解析式.
(2)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)交于點(diǎn)A(),落在兩個(gè)相鄰的正整數(shù)之間,請(qǐng)求出這兩個(gè)相鄰的正整數(shù).
(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)的交點(diǎn)為B,點(diǎn)B的橫坐標(biāo)為m,且滿足3<m<4,求實(shí)數(shù)k的取值范圍.
【答案】(1);(2)1與2;(3)
【解析】
(1)已知了拋物線與x軸的交點(diǎn),可用交點(diǎn)式來(lái)設(shè)二次函數(shù)的解析式.然后將另一點(diǎn)的坐標(biāo)代入即可求出函數(shù)的解析式;
(2)可根據(jù)(1)的拋物線的解析式和反比例函數(shù)的解析式來(lái)聯(lián)立方程組,求出的方程組的解就是兩函數(shù)的交點(diǎn)坐標(biāo),然后找出第一象限內(nèi)交點(diǎn)的坐標(biāo),即可得出符合條件的的值,進(jìn)而可寫(xiě)出所求的兩個(gè)正整數(shù)即可;
(3)點(diǎn)B的橫坐標(biāo)為m,滿足3<m<4,可通過(guò)m=3,m=4兩個(gè)點(diǎn)上拋物線與反比例函數(shù)的大小關(guān)系即可求出k的取值范圍.
解:(1)∵二次函數(shù)圖像經(jīng)過(guò)(1,0),(-6,0),(0,-3),
∴設(shè)二次函數(shù)解析式為,
將點(diǎn)(0,3)代入解析式得,
∴;
∴,
即二次函數(shù)解析式為;
(2)如圖,根據(jù)二次函數(shù)與反比例函數(shù)在第一象限的圖像可知,
當(dāng)時(shí),有;
當(dāng)時(shí),有,
故兩函數(shù)交點(diǎn)的橫坐標(biāo)落在1和2之間,從而得出這兩個(gè)相鄰的正整數(shù)為1與2.
(3)根據(jù)函數(shù)圖像性質(zhì)可知:
當(dāng)時(shí),對(duì),隨著的增大而增大,
對(duì),隨著的增大而減小,
∵點(diǎn)B為二次函數(shù)與反比例函數(shù)交點(diǎn),
∴當(dāng)時(shí),,
即,解得,
同理,當(dāng)時(shí),,
即,解得,
∴的取值范圍為;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(10,0),點(diǎn)C、D在以OA為直徑的半圓上,點(diǎn)B在OA上,且四邊形OCDB是菱形,則點(diǎn)C的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線PQ的同側(cè)有兩點(diǎn)M,N,點(diǎn)T在直線PQ上,若∠MTP=∠NTQ,則稱(chēng)點(diǎn)M,N為關(guān)于直線PQ的衍射點(diǎn).如圖2,BD是矩形ABCD的對(duì)角線,E是邊BC延長(zhǎng)線上的一點(diǎn),且CE=BC,連接AE交CD于點(diǎn)F,交BD于點(diǎn)P,連接BF,CP.
(1)求證:點(diǎn)A,B是關(guān)于直線CD的衍射點(diǎn).
(2)若點(diǎn)C,F是關(guān)于直線BD的衍射點(diǎn),CP=2PF=2,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某政府工作報(bào)告中強(qiáng)調(diào),2019年著重推進(jìn)鄉(xiāng)村振興戰(zhàn)略,做優(yōu)做響湘蓮等特色農(nóng)產(chǎn)品品牌.小亮調(diào)查了一家湘潭特產(chǎn)店兩種湘蓮禮盒一個(gè)月的銷(xiāo)售情況,A種湘蓮禮盒進(jìn)價(jià)72元/盒,售價(jià)120元/盒,B種湘蓮禮盒進(jìn)價(jià)40元/盒,售價(jià)80元/盒,這兩種湘蓮禮盒這個(gè)月平均每天的銷(xiāo)售總額為2800元,平均每天的總利潤(rùn)為1280元.
(1)求該店平均每天銷(xiāo)售這兩種湘蓮禮盒各多少盒?
(2)小亮調(diào)査發(fā)現(xiàn),種湘蓮禮盒售價(jià)每降3元可多賣(mài)1盒.若種湘蓮禮盒的售價(jià)和銷(xiāo)量不變,當(dāng)種湘蓮禮盒降價(jià)多少元/盒時(shí),這兩種湘蓮禮盒平均每天的總利潤(rùn)最大,最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),.點(diǎn)在函數(shù)圖像上,軸,且,直線是拋物線的對(duì)稱(chēng)軸,是拋物線的頂點(diǎn).
(1)求、的值;
(2)如圖①,連接,線段上的點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)恰好在線段上,求點(diǎn)的坐標(biāo);
(3)如圖②,動(dòng)點(diǎn)在線段上,過(guò)點(diǎn)作軸的垂線分別與交于點(diǎn),與拋物線交于點(diǎn).試問(wèn):拋物線上是否存在點(diǎn),使得與的面積相等,且線段的長(zhǎng)度最?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是AB的中點(diǎn),以CD為直徑作⊙O,⊙O分別與AC,BC交于點(diǎn)E,F(xiàn),過(guò)點(diǎn)F作⊙O的切線FG,交AB于點(diǎn)G,則FG的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(記過(guò)保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的半徑為1,,是的兩條弦,且,延長(zhǎng)交于點(diǎn),連接,,若,則=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線.
(1)求證:拋物線與軸有兩個(gè)交點(diǎn).
(2)設(shè)拋物線與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,(其中).若是關(guān)于的函數(shù)、且,求這個(gè)函數(shù)的表達(dá)式;
(3)若,將拋物線向上平移一個(gè)單位后與軸交于點(diǎn)、.平移后如圖所示,過(guò)作直線,分別交的正半軸于點(diǎn)和拋物線于點(diǎn),且.是線段上一動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com