【題目】已知:如圖四邊形OACB是菱形,OBX軸的正半軸上,sinAOB=.反比例函數(shù)y=在第一象限圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F.SAOF=,則k=(  )

A. 15 B. 13 C. 12 D. 5

【答案】A

【解析】

過點(diǎn)AAMx軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出SAOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出a的值,進(jìn)而依據(jù)點(diǎn)A的坐標(biāo)得到k的值.

過點(diǎn)AAMx軸于點(diǎn)M,如圖所示.

設(shè)OA=a=OB,則,

RtOAM中,∠AMO=90°,OA=a,sinAOB=,

AM=OAsinAOB=a,OM=a,

∴點(diǎn)A的坐標(biāo)為(a,a).

∵四邊形OACB是菱形,SAOF=,

OB×AM=,

×a×a=39,

解得a=±,而a>0,

a=,即A(,6),

∵點(diǎn)A在反比例函數(shù)y=的圖象上,

k=×6=15.

故選A.

【解答】

解:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店銷售甲、乙兩種圓規(guī),當(dāng)銷售5只甲種、1只乙種圓規(guī),可獲利潤25元,銷售6只甲種、3只乙種圓規(guī),可獲利潤39元.

1問該文具店銷售甲、乙兩種圓規(guī),每只的利潤分別是多少元?

21中,文具店共銷售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤Pa的函數(shù)關(guān)系式,并求當(dāng)a≥30時(shí)P的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形PQMN在△ABC內(nèi),點(diǎn)PAC上,點(diǎn)Q、MAB上,N在△ABC內(nèi),連接AN并延長交BCG,過G點(diǎn)作GDABACD,過DG分別作DE AB,GFAB,垂足分別為E、F

1)求證:DG=GF;

2)若AB=10SABC=40,試求四邊形DEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織甲、乙兩班學(xué)生參加美化校園的義務(wù)勞動(dòng).如果甲班做2小時(shí),乙班做3小時(shí),那么可完成全部工作的一半;如果甲班先做2小時(shí)后另有任務(wù),剩下工作由乙班單獨(dú)完成,那么乙班所用的時(shí)間恰好比甲班單獨(dú)完成全部工作的時(shí)間多1小時(shí).問:甲乙兩班單獨(dú)完成這項(xiàng)工作各需多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某工藝廠設(shè)計(jì)了款成本為元件的工藝品投放市場(chǎng)進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(jià)(元/件)

···

···

每天銷售量(件)

···

···

1)若的一次函數(shù),求出此函數(shù)的關(guān)系式:

2)若用()表示工藝廠試銷該工藝品每天獲得的利潤,試求()(/)之間的函數(shù)關(guān)系式.

3)若該工藝品的每天的總成木不能超過元,那么銷售單價(jià)定為多少元時(shí),工藝廠試銷工藝品每天獲得的利潤最大,最大是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,某校九年級(jí)學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計(jì)圖(圖11-2,根據(jù)圖表中的信息解答下列問題:

分組

分?jǐn)?shù)段(分)

頻數(shù)

A

36≤x41

2
2

B

41≤x46

5

C

46≤x51

15

D

51≤x56

m

E

56≤x61

10

1)求全班學(xué)生人數(shù)和的值.

2)直接學(xué)出該班學(xué)生的中考體育成績的中位數(shù)落在哪個(gè)分?jǐn)?shù)段.

3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用列表法畫樹狀圖法求出恰好選到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是小區(qū)常見的漫步機(jī),當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會(huì)帶動(dòng)踏板連桿繞軸旋轉(zhuǎn).如圖2,從側(cè)面看,踏板靜止DE上的線段AB重合,測(cè)得BE長為0.21m,當(dāng)踏板連桿繞著A旋轉(zhuǎn)到AC處時(shí),測(cè)得∠CAB42°,點(diǎn)C到地面的距離CF長為0.52m,當(dāng)踏板連桿繞著點(diǎn)A旋轉(zhuǎn)到AG處∠GAB30°時(shí),求點(diǎn)G距離地面的高度GH的長.(精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74tan42°≈0.90,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次大課間活動(dòng)中,采用了三種活動(dòng)形式:A跑步,B跳繩,C做操,該校學(xué)生都選擇了一種形式參與活動(dòng).

1)小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,列出了兩幅不完整的統(tǒng)計(jì)圖,利用圖中所提供的信息解決以下問題:

①小杰共調(diào)查統(tǒng)計(jì)了   人;②請(qǐng)將圖1補(bǔ)充完整;③圖2C所占的圓心角的度數(shù)是   

2)假設(shè)被調(diào)查的甲、乙兩名同學(xué)對(duì)這三項(xiàng)活動(dòng)的選擇是等可能的,請(qǐng)你用列表格或畫樹狀圖的方法求一下兩人中至少有一個(gè)選擇A的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧原長(不掛重物)15cm,彈簧總長Lcm)與重物質(zhì)量xkg)的關(guān)系如下:

彈簧總長Lcm

16

17

18

19

20

重物質(zhì)量xkg

0.5

1.0

1.5

2.0

2.5

1)求Lx之間的函數(shù)關(guān)系;

2)請(qǐng)估計(jì)重物為5kg時(shí)彈簧總長Lcm)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案