【題目】如圖,已知點 A 是反比例函數(shù) y 在第一象限圖象上的一個動點,連接 OA,以OA 為長,OA為寬作矩形 AOCB,且點 C 在第四象限,隨著點 A 的運動,點 C 也隨之運動,但點 C 始終在反比例函數(shù) y 的圖象上,則 k 的值為________.
【答案】3
【解析】
設A(a,b),則ab=,分別過A,C作AE⊥x軸于E,CF⊥x軸于F,根據(jù)相似三角形的判定證得△AOE∽△COF,由相似三角形的性質得到OF=,CF=,則k=-OFCF=-3.
設A(a,b),
∴OE=a,AE=b,
∵在反比例函數(shù)y=圖象上,
∴ab=,
分別過A,C作AE⊥x軸于E,CF⊥x軸于F,
∵矩形AOCB,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
∴===,
∴OF=AE=b,CF=OE=a,
∵C在反比例函數(shù)y=的圖象上,且點C在第四象限,
∴k=OFCF=ba=3ab=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+1與二次函數(shù)y2=ax2+bx﹣2交于A,B兩點,且A(1,0)拋物線的對稱軸是x=﹣ .
(1)求k和a、b的值;
(2)求不等式kx+1>ax2+bx﹣2的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年3月27日是全國中小學生安全教育日,某校為加強學生的安全意識,組織了全校學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整致,滿分為10分) 進行統(tǒng)計,繪制了圖中兩幅不完整的統(tǒng)計圖.
(1)a=_____,n=_____;
(2)補全頻數(shù)直方圖;
(3)該校共有2000名學生.若成績在70分以下(含70分)的學生安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣2,﹣2)、B(n,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,半徑為1cm的⊙P的圓心在直線AB上,且與點O的距離為6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移動,那么________秒種后⊙P與直線CD相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A、D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=.
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A.C的坐標和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線BC與半徑為6的⊙O相切于點B,點M是圓上的動點,過點M作MC⊥BC,垂足為C,MC與⊙O交于點D,AB為⊙O的直徑,連接MA、MB,設MC的長為x,(6<x<12).
(1)當x=9時,求BM的長和△ABM的面積;
(2)是否存在點M,使MDDC=20?若存在,請求出x的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com