【題目】如圖,已知A(﹣2,﹣2)、B(n,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.
【答案】(1) 反比例函數(shù)的解析式為 y= ,一次函數(shù)的解析式為y=2x+2;(2)3
【解析】
(1)把A(-2,-2)代入反比例函數(shù)y=,得出m的值,再把B(n,4)代入一次函數(shù)的解析式y=kx+b,運(yùn)用待定系數(shù)法分別求其解析式;
(2)設(shè)直線AB與y軸交于點C,把三角形AOB的面積看成是三角形AOC和三角形OCB的面積之和進(jìn)行計算.
解:(1)∵A(﹣2,﹣2)在y=上,
∴m=4.
∴反比例函數(shù)的解析式為y=.
∵點B(n,4)在y=上,
∴n=1.
∴B(1,4).
∵y=kx+b經(jīng)過A(﹣2,﹣2),B(1,4),
∴ .
解之得.
∴一次函數(shù)的解析式為y=2x+2.
(2)設(shè)C是直線AB與y軸的交點,
∴當(dāng)x=0時,y=2.
∴點C(0,2).
∴OC=2.
∴S△AOB=S△ACO+S△BCO=×2×2+×2×1=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于半圓,AB是直徑,過A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線;
(2)設(shè)D是弧AC的中點,連結(jié)BD交AC 于G,過D作DE⊥AB于E,交AC于F.求證:FD=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗田,要使試驗田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,AD=5,求OC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2﹣6x+c的圖象過A(﹣1,y1),B(2,y2),C(3,y3),則y1、y2、y3的大小關(guān)系是( 。
A. y1>y2>y3 B. y1>y3>y2 C. y2>y1>y3 D. y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點 A 是反比例函數(shù) y 在第一象限圖象上的一個動點,連接 OA,以OA 為長,OA為寬作矩形 AOCB,且點 C 在第四象限,隨著點 A 的運(yùn)動,點 C 也隨之運(yùn)動,但點 C 始終在反比例函數(shù) y 的圖象上,則 k 的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初二年級數(shù)學(xué)考試,(滿分為100分,該班學(xué)生成績均不低于50分)作了統(tǒng)計分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計 |
頻數(shù) | 2 | a | 20 | 16 | 4 | 50 |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
(1)頻數(shù)、頻率分布表中a= ,b= ;(答案直接填在題中橫線上)
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校八年級共有600名學(xué)生,且各個班級學(xué)生成績分布基本相同,請估計該校八年級上學(xué)期期末考試成績低于70分的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com