【題目】如圖,將兩條寬度為3的直尺重疊在一起,使∠ABC=60°,則四邊形ABCD的面積是_____________
【答案】6
【解析】先根據(jù)兩組對邊分別平行證明四邊形ABCD是平行四邊形,再根據(jù)兩張紙條的寬度相等,利用面積求出AB=BC,然后根據(jù)鄰邊相等的平行四邊形是菱形;根據(jù)寬度是3與∠ABC=60°求出菱形的邊長,然后利用菱形的面積=底×高計算即可.
紙條的對邊平行,即AB∥CD,AD∥BC,
∴四邊形ABCD是平行四邊形,
∵兩張紙條的寬度都是3,
∴S四邊形ABCD=AB×3=BC×3,
∴AB=BC,
∴平行四邊形ABCD是菱形,即四邊形ABCD是菱形.
如圖,過A作AE⊥BC,垂足為E,
∵∠ABC=60,
∴∠BAE=90°60°=30°,
∴AB=2BE,
在△ABE中,AB2=BE2+AE2,
即AB2=AB2+32,
解得AB=,
∴S四邊形ABCD=BCAE=×3=.
故答案是:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40天
(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時 天
(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸是x=1,與x軸有兩個交點,與y軸的交點坐標(biāo)是(0,3),把它向下平移2個單位長度后,得到新的拋物線的解析式是y=ax2+bx+c,以下四個結(jié)論: ①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,其中正確的是(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形的邊長.某一時刻,動點從點出發(fā)沿方向以的速度向點勻速運動;同時,動點從點出發(fā)沿方向以的速度向點勻速運動,問:
(1)經(jīng)過多少時間,的面積等于矩形面積的?
(2)是否存在時刻t,使以A,M,N為頂點的三角形與相似?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點80米處有一所學(xué)校A.當(dāng)重型運輸卡車P沿道路ON方向行駛時,在以P為圓心50米長為半徑的圓形區(qū)域內(nèi)都會受到卡車噪聲的影響,且卡車P與學(xué)校A的距離越近噪聲影響越大.若已知重型運輸卡車P沿道路ON方向行駛的速度為18千米/時.
(1)求對學(xué)校A的噪聲影響最大時卡車P與學(xué)校A的距離;
(2)求卡車P沿道路ON方向行駛一次給學(xué)校A帶來噪聲影響的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛轎車從甲地駛往乙地,到達乙地后立即返回甲地,速度是原來的1.5倍,往返共用t小時.一輛貨車同時從甲地駛往乙地,到達乙地后停止.兩車同時出發(fā),勻速行駛,設(shè)轎車行駛的時間為x(h),兩車離開甲地的距離為y(km),兩車行駛過程中y與x之間的函數(shù)圖象如圖所示.
(1)轎車從乙地返回甲地的速度為 km/t,t= h;
(2)求轎車從乙地返回甲地時y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)轎車從甲地返回乙地的途中與貨車相遇時,求相遇處到甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙中,△ABC的頂點都在小正方形的頂點上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.
(1)作出△ABC關(guān)于y軸對稱的△A1B1C1,其中A,B,C分別和A1,B1,C1對應(yīng);
(2)平移△ABC,使得A點在x軸上,B點在y軸上,平移后的三角形記為△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分別和A2,B2,C2對應(yīng);
(3)△ABC的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線的表達式為,點A,B的坐標(biāo)分別為
(1,0),(0,2),直線AB與直線相交于點P.
(1)求直線AB的表達式;
(2)求點P的坐標(biāo);
(3)若直線上存在一點C,使得△APC的面積是△APO的面積的2倍,直接寫出點C的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com