【題目】如圖,在△ABC中,AC=BC,∠C=90°,D是AB的中點(diǎn),DE⊥DF,點(diǎn)E,F(xiàn)分別在AC,BC上,求證:DE=DF.

【答案】解:連接CD,
∵∠C=90°,D是AB的中點(diǎn),
∴CD= AB=BD,
∵AC=BC,
∴CD⊥AB,∠ACD=∠B=45°,
∴∠CDF+∠BDF=90°,
∵ED⊥DF,
∴∠EDF=90°,
∴∠EDC+∠CDF=90°,
∴∠EDC=∠BDF,
∴△ECD≌△FBD,
∴DE=DF.

【解析】連接CD,構(gòu)建全等三角形,證明△ECD≌△FBD即可.本題考查了等腰直角三角形和全等三角形的性質(zhì)和判定,運(yùn)用了直角三角形斜邊上的中線(xiàn)等于斜邊的一半,以及等腰三角形三線(xiàn)合一的性質(zhì),同時(shí)要熟知等腰直角三角形的特殊性:如兩個(gè)銳角都是45°;在全等三角形的證明中,常運(yùn)用同角的余角相等來(lái)證明角相等.
【考點(diǎn)精析】本題主要考查了等腰直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(﹣1)2016+x0 +
(2) ÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,若增加一個(gè)條件,使ABCD成為菱形,下列給出的條件不正確的是(

A.AB=AD
B.AC⊥BD
C.AC=BD
D.∠BAC=∠DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個(gè)動(dòng)點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線(xiàn)BA交于點(diǎn)D,射線(xiàn)PD交射線(xiàn)CA于點(diǎn)E.

(1)若點(diǎn)E在線(xiàn)段CA的延長(zhǎng)線(xiàn)上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
(2)當(dāng)BP=2 時(shí),試說(shuō)明射線(xiàn)CA與⊙P是否相切.
(3)連接PA,若SAPE= SABC , 求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=10cm;BC=6cm,點(diǎn)D為AB的中點(diǎn).

(1)如果點(diǎn)P在線(xiàn)段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,BPD與CQP是否全等,請(qǐng)說(shuō)明理由;

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPD與CQP全等?

(2)若點(diǎn)Q以中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B出發(fā)都逆時(shí)針沿ABC三邊運(yùn)動(dòng),直接寫(xiě)出經(jīng)過(guò)多少秒后,點(diǎn)P與點(diǎn)Q第一次在ABC的那一條邊上相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長(zhǎng)線(xiàn)上一點(diǎn),PA=PC,∠C=30°.

(1)求證:CP是⊙O的切線(xiàn).
(2)若⊙O的直徑為8,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、F、C、E在一條直線(xiàn)上,AB∥ED,AC∥FD,那么添加下列一個(gè)條件后,仍無(wú)法判定△ABC≌△DEF的是(

A.AB=DE
B.AC=DF
C.∠A=∠D
D.BF=EC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,∠CDB=30°,⊙O的半徑為5cm,則圓心O到弦CD的距離為(

A. cm
B.3cm
C.3 cm
D.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:“兩邊及其中一邊的對(duì)角分別相等的兩個(gè)三角形不一定全等”.但是,小亮發(fā)現(xiàn):當(dāng)這兩個(gè)三角形都是銳角三角形時(shí),它們會(huì)全等,除小亮的發(fā)現(xiàn)之外,當(dāng)這兩個(gè)三角形都是時(shí),它們也會(huì)全等;當(dāng)這兩個(gè)三角形其中一個(gè)三角形是銳角三角形,另一個(gè)是時(shí),它們一定不全等.

查看答案和解析>>

同步練習(xí)冊(cè)答案