【題目】1)計算: 2)計算:

3)解方程:

4)解不等式組,并把它們的解集在數(shù)軸上表示出來.

【答案】11;(2;(3;(4.

【解析】

1)首先解平方根和立方根,然后再按順序計算.2)首先觀察為最簡二次根式,然后將同類二次根式的系數(shù)相加減即可.3)利用消元消元法,求解二元一次方程即可。(4)首先解出一元一次不等式的解集,然后在數(shù)軸上表示即可.

(1)

原式=2-(3-2)=2-1=1

(2)

原式=(1+3-6)= -2

(3)

解:把3x-2y=4方程兩邊同時乘以3,得9x-6y=12③,用②-③得9x-5y-9x+6y=13-12,解得y=1,把y=1代入①得3x-2×1=4,解得x=2,綜上所述x=2,y=1

(3)

解:x- 解得x,1+3x2(2x-1)解得x3,所以0.8x3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動點,PEABE,PFACF,MEF中點,則AM的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點F,交BC的延長線于點E,連接AE,DF.

求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的邊BC在x軸上,頂點A在y軸的正半軸上,OA=2,OB=1,OC=4.

(1)求過A、B、C三點的拋物線的解析式;

(2)設(shè)點M是x軸上的動點,試問:在平面直角坐標系中,是否存在點N,使得以點A,B,M,N為頂點的四邊形是菱形?若存在,直接寫出點N的坐標;若不存在,說明理由;

(3)若拋物線對稱軸交x軸于點P,在平面直角坐標系中,是否存在點Q,使PAQ是以PA為腰的等腰直角三角形?若存在,寫出所有符合條件的點Q的坐標,選擇一種情況加以說明;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,可以單獨用正三角形、正方形或正六邊形鋪滿地面,如果我們要同時用兩種不同的正多邊形鋪滿地面,可以設(shè)計出幾種不同的組合方案?

問題解決:

猜想1:是否可以同時用正方形、正八邊形兩種正多邊形組合鋪滿地面?

驗證1并完成填空:在鋪地面時,設(shè)圍繞某一個點有x個正方形和y個正八邊形的內(nèi)角可以拼成一個周角.根據(jù)題意:可得方程①:

整理得②: ,

我們可以找到方程的正整數(shù)解為③:

結(jié)論1:鋪滿地面時,在一個頂點周圍圍繞著④個正方形和⑤個正八邊形的內(nèi)角可以拼成一個周角,所以同時用正方形和正八邊形兩種正多邊形組合可以鋪滿地面.

猜想2:是否可以同時用正三角形和正六邊形兩種正多邊形組合鋪滿地面?若能,請按照上述方法進行驗證,并寫出所有可能的方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉行漢字聽寫比賽,每位學生聽寫漢字個,比賽結(jié)束后,隨機抽查部分學生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分,根據(jù)信息解決下列問題:

組別

正確字數(shù)

人數(shù)

A

B

C

D

E

1)在統(tǒng)計表中, ,

2)補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中“D所對應(yīng)的圓心角的度數(shù)為

4)若該校共有名學生,如果聽寫正確的字數(shù)少于個定為不合格,請你估計這所中學這次比賽聽寫不合格的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝廠設(shè)計了一款成本為10元/件的工藝品投放市場進行試銷.

經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元/件)

20

30

40

50

60

每天銷售量y(件)

500

400

300

200

100

(1)把上表中x、y的各組對應(yīng)值作為點的坐標,在下面的平面直角坐標系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系式,并求出函數(shù)關(guān)系式.

(2)物價部門規(guī)定,該工藝品的銷售單價最高不超過45元/件,當銷售單價x定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?(利潤=銷售總價﹣成本總價)

(3)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價﹣成本總價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角中,邊上的高. ,.連接,交的延長線于點,連接.下列結(jié)論:;;;.其中一定正確的個數(shù)是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的、兩點,與軸交于點,點軸負半軸上,,且四邊形是平行四邊形,點的縱坐標為.

(1)求該反比例函數(shù)和一次函數(shù)的表達式;

(2)連接,求的面積;

(3)直接寫出關(guān)于的不等式的解集.

查看答案和解析>>

同步練習冊答案